首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[1,+∞)上单调减少且非负的连续函数, (1)证明:存在; (2)证明:反常积分同敛散.
设f(x)在区间[1,+∞)上单调减少且非负的连续函数, (1)证明:存在; (2)证明:反常积分同敛散.
admin
2015-07-04
98
问题
设f(x)在区间[1,+∞)上单调减少且非负的连续函数,
(1)证明:
存在;
(2)证明:反常积分
同敛散.
选项
答案
(1)由f(x)单调减少,故当k≤x≤k+1时,f(k+1)≤f(x)≤f(k).两边从k到k+1积分,得[*]
解析
由f(x)单调减少,当k≤x≤k+1时,可以写出关于f(x)的一个不等式,两边从k到k+1积分,便可得到关于a
n
的一个表达式.
转载请注明原文地址:https://www.kaotiyun.com/show/ezw4777K
0
考研数学一
相关试题推荐
设在区间[a,b]上f(x)>0,f’(x)<0,f"(x)>0,令S1=∫abf(x)dx,S2=f(b)(b-a),S3=(b-a)/2[f(a)+f(b)],则().
在上半平面上求一条上凹曲线,其上任一点P(x,y)处的曲率等于此曲线在该点的法线段PQ的长度的倒数(Q为法线与x轴的交点),且曲线在点(1,1)处的切线与x轴平行.
求微分方程xy"+2y’=ex的通解.
微分方程y"-4y=x+2的通解为().
若四次方程a。x4+a1x3+a2x+a3x+a4=0有四个不同的实根,试证明4a。x3+3a1x2+2a2x+a3=0的所有根皆为实根.
某企业做销售某种商品的广告可通过电台及报纸两种方式,根据统计资料,销售收入R(万元)与电台广告费用x1(万元)和报纸广告费用x2(万元)之间的关系如下:R=15+14x1+32x2-8x1x2-2x12-10x22在广告费用不限的情况下,求最
求f(x)=ln(1—2x)的6阶麦克劳林公式(带皮亚诺型余项).
设是f(x)的以2π为周期的傅里叶级数,则a100=________.
设f(x)在(-∞,+∞)上可导,且其反函数存在为g(x).若则当-∞<x<+∞时f(x)=________
设求.
随机试题
经常储备
对心肌损害诊断最具有特异性的血清酶是
类风湿因子可能出现在
某市安全生产监督管理部门在调查处理一起股份制企业因安全生产投入不足造成的生产安全事故时,就安全生产投入的责任主体发生了分歧。依据《安全生产法》,该企业保证安全生产投入的主体应是()。
凤凰卫视是全球性华语卫星电视频道,是华语媒体中最有影响力的媒体之一,是中国大陆最先获得落地权的境外电视媒体之一。凤凰卫视于2018年3月7日正式更名为“凤凰卫视投资(控股)有限公司”,更名后其定位已升级为“内容运营型高科技全媒体集团”,并订立了为期三年
某股份有限公司于20X0年3月30日,以每股12元的价格购入某上市公司股票50万股,作为短期投资;购买该股票支付手续费等10万元。5月25日,收到该上市公司按每股0.5元发放的现金股利。12月31日该股票的市价为每股11元。20X0年12月31日该股票投资
在横线上分别补写出倡议的理由和具体内容。(两处字数各不超过40个字)倡议书各位同学:乘坐公交是很多市民日常出行的选择。众所周知,_____
骄傲对于(),相当于()对于“不经历风雨,怎能见彩虹”
Nearlyhalftheworld’spopulationwillexperience【C1】______watershortagesby2025,【C2】______theUnitedNations.Wars【C3】_____
HowtoStandOutatGraduateFairsA)Amajoreventforalljob-seekinggraduatesisTheGuardianLondonGraduateFairfro
最新回复
(
0
)