首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n维列向量组(Ⅰ):α1,α2,…,αr(r<n)线性无关,则n维列向量组(Ⅱ):β1,β2,…,βr线性无关的充分必要条件为( )。
已知n维列向量组(Ⅰ):α1,α2,…,αr(r<n)线性无关,则n维列向量组(Ⅱ):β1,β2,…,βr线性无关的充分必要条件为( )。
admin
2019-02-23
61
问题
已知n维列向量组(Ⅰ):α
1
,α
2
,…,α
r
(r<n)线性无关,则n维列向量组(Ⅱ):β
1
,β
2
,…,β
r
线性无关的充分必要条件为( )。
选项
A、β
1
,β
2
,…,β
r
可由α
1
,α
2
,…,α
r
线性表示。
B、α
1
,α
2
,…,α
r
可由β
1
,β
2
,…,β
r
线性表示。
C、α
1
,α
2
,…,α
r
和β
1
,β
2
,…,β
r
等价。
D、矩阵A=(α
1
,α
2
,…,α
r
)与B=(β
1
,β
2
,…,β
r
)等价。
答案
D
解析
对于选项(A),由已知条件只能得R(Ⅱ)≤R(Ⅰ)=r,但得不到R(Ⅱ)=R(Ⅰ)=r,
故(A)不正确。
对于选项(B),由已知条件知r=R(Ⅰ)≤R(Ⅱ)≤r,于是R(Ⅱ)=r,即β
1
,β
2
,…,β
r
线性无关。
因而(B)是充分条件。但若β
1
,β
2
,…,β
r
线性无关,是不能得出α
1
,α
2
,…,α
r
可由β
1
,β
2
,…,β
r
线性表出的结论。例如,(Ⅰ):e
1
=(1,0,0)
T
,e
2
=(0,1,0)
T
;
(Ⅱ)e
2
=(0,1,0)
T
,e
3
=(0,0,1)
T
,
(Ⅰ)(Ⅱ)均线性无关,但(Ⅰ)不可由(Ⅱ)线性表出,故(B)错误。
对于选项(C),由于(B)不是必要条件,则(C)就不可能是必要条件。
对于选项(D),注意到两个同型矩阵等价的充分必要条件是秩相等,由题设知R(A)=R(Ⅰ)=r,则A与B等价
(B)=r
β
1
,β
2
,…,β
r
线性无关,所以选项(D)是正确的。
转载请注明原文地址:https://www.kaotiyun.com/show/en04777K
0
考研数学一
相关试题推荐
[*]
设随机变量X,Y独立同分布,且P(X=i)=,i=1,2,3.设随机变量U=max{X,Y),V=min{X,Y}.(1)求二维随机变量(U,V)的联合分布;(2)求Z=UV的分布;(3)判断U,V是否相互独立?(4)求P(U
设总体X~N(μ,σ2),X1,X2,…,X9为来自X的简单随机样本,试确定σ的值,使得概率
设由方程φ(bz一cy,cx一az,ay一bx)=0(*)确定隐函数z=z(x,y),其中φ对所有变量有连续偏导数,a,b,c为非零常数,且bφ1’一aφ2’≠0,求
函数在点M0(1,1,1)处沿曲面2z=x2+y2在点M0处外法线方向n的方向导数=______.
进行独立重复试验直到试验取得首次成功为止,设每次试验的成功率都是p(0<p<1).现进行10批试验,其各批试验次数分别为5,4,8,3,4,7,3,1,2,3.求:(Ⅰ)试验成功率p的矩估计值;(Ⅱ)试验失败率q的最大似然估计值.
以下命题正确的是().
矩形闸门宽a米,高h米,垂直放在水中,上边与水面相齐,闸门压力为().
设函数f(x)是定义在(-1,1)内的奇函数,且则f(x)在x=0处的导数为()
设A是n阶矩阵,X是任意的n维列向量,B是任意的n阶方阵,则下列说法错误的是()
随机试题
应交税费中的“税费”一般主要包括______、______、______、______、______。
设D是第一象限中由曲线y=x2,x+y一2=0和y=0所围成的区域,则二重积分=______.
HaveyoueverhadtodecidewhethertogoshoppingorstayhomeandwatchTVonaweekend?Nowyou【C1】______dobothatthesam
滴虫性阴道炎病人的治愈标准是( )。
男性,48岁,2年前曾患乙型肝炎,近3个月血清丙氨酸氨基转移酶(ALT)反复波动100U/L左右。因发热3天伴右上腹隐痛入院,体温38.5℃。血白细胞计数11.2×109/L、中性80%ALTl190U/L。体检:皮肤、巩膜无黄染,颈部数个蜘蛛痣,肝肋下2
碘量法分为直接碘量法和间接碘量法。()
根据《担保法》的规定,可以有资格成为保证人的是()。
企业所得税的纳税义务人有()。
下列关于法起源的一般规律,错误的是()。
InformationIsPowerInsuchachanging,complexsocietyformerlysimplesolutionstoinformationalneedsbecomecomplicated
最新回复
(
0
)