首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求内接于椭球面的长方体的最大体积.
求内接于椭球面的长方体的最大体积.
admin
2019-03-12
67
问题
求内接于椭球面
的长方体的最大体积.
选项
答案
设该内接长方体体积为υ,p(x,y,z)(x>0,y>0,z>0)是长方体的一个顶点,且位于椭球面上,由于椭球面关于三个坐标平面对称,所以υ=8xyz,x>0,y>0,z>0且满足条件 [*] 由题意知,内接于椭球面的长方体的体积没有最小值,而存在最大值,因而以点 [*] 为顶点所作对称于坐标平面的长方体即为所求的最大长方体,体积为 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/efP4777K
0
考研数学三
相关试题推荐
设f(x)在(a,b)内处处可导,且满足f’(x)≠0.证明对任何x0∈(a,b)一定存在x1,x2∈(a,b)使得f(x1)>f(x0)>f(x2).
求数列极限w=.
计算下列二重积分:
在椭圆=1的第一象限部分上求一点P,使该点处的切线,椭圆及两坐标轴所围图形的面积最小.
α1,α2,α3是四元非齐次线性方程组Aχ=b.的三个解向量,且R(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T.c表示任意常数,则线性方程组Aχ=b的通解χ=().
设齐次线性方程组Aχ=O的基础解系为α1=(1,3,0,2)T,α2=(1,2,-1,3)T.Bχ=0的基础解系为β1=(1,1,2,1)T,β2=(0,-3,1,a)T.若Aχ=0和Bχ=0有非零公共解,求a的值并求公共解.
设α1,α2,α3,α4,β为4维列向量,A=(α1,α2,α3,α4),若Aχ=β的通解为(-1,1,0,2)T+k(1,-1,2,0)T,则(Ⅰ)β能否由α1,α2,α3线性表示?为什么?(Ⅱ)求α1,α2,α3,α4,β的一个极大
设二维连续型随机变量(X,Y)服从区域D上的均匀分布,其中D={(x,y)10≤y≤x≤2—y}.试求:(Ⅰ)X+Y的概率密度;(Ⅱ)X的边缘概率密度;(Ⅲ)P{Y≤0.2|X=1.5}.
已知A是3阶矩阵,A的特征值为1,—2,3.则(A*)*的特征值为________.
设A是三阶方阵,将A的第1列与第2列交换得B,再把B的第2列加到第3列上得C,则满足AQ=C的可逆矩阵Q为()
随机试题
Adamsnowmaintainsthatitislessimportanttosavethenation______toaperilousfuture.()
Afterayearofagreement,preparationsforthefestivalarenowproceedingsmoothly.
胃液的成分有
甲市L区居民叶某购买了住所在乙市M区的大亿公司开发的位于丙市N区的商品房一套,合同中约定双方因履行合同发生争议可以向位于丙市的仲裁委员会(丙市仅有一家仲裁机构)申请仲裁。因大亿公司迟迟未按合同约定交付房屋,叶某向仲裁委员会申请仲裁。大亿公司以仲裁机构约定不
定量包装商品计量监督管理的对象是以销售为目的,在一定量限范围内具有统一的________标注等标识内容的预包装商品。
为了担保债的履行而在债务人或第三人特定的物或权利上所设定的权利称为()。
进出口货物申报后确有正当理由的,经海关同意方可修改或撤销申报。下列表述中属于正当理由的是()。
B公司是一家生产电子产品的制造类企业,采用直线法计提折旧,适用的企业所得税税率为25%。在公司最近一次经营战略分析会上,多数管理人员认为,现有设备效率不高,影响了企业市场竞争力。公司准备配置新设备扩大生产规模,推定结构转型,生产新一代电子产品。 (1)
阅读下列材料,回答问题。最近,一位母亲来信反映她3岁半的孩子患口吃,至今已整整一年多。表现为一说话就高度紧张,言语断断续续,尤其是在人多的场合更是如此。虽然夫妇俩经常提醒、纠正孩子的说话,有时甚至还吓唬、惩罚孩子,但收效很小。孩子已变得十分沉默、
“教书”和“育人”的关系是()
最新回复
(
0
)