首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]连续可导,且f(0)=0.证明:存在ξ∈[0,1],使得f’(ξ)=2∫01f(x)dx.
设f(x)在[0,1]连续可导,且f(0)=0.证明:存在ξ∈[0,1],使得f’(ξ)=2∫01f(x)dx.
admin
2018-05-21
36
问题
设f(x)在[0,1]连续可导,且f(0)=0.证明:存在ξ∈[0,1],使得f’(ξ)=2∫
0
1
f(x)dx.
选项
答案
因为f’(x)在区间[0,1]上连续,所以f’(x)在区间[0,1]1上取到最大值M和最小值m,对f(x)-f(0)=f’(c)x(其中c介于0与x之间)两边积分得 ∫
0
1
f(x)dx=∫
0
1
f’(c)xdx, 由m≤f’(c)≤M得m∫
0
1
dx≤∫
0
1
f’(c)xdx≤M∫
0
1
xdx, 即m≤2∫
0
1
f’(c)xdx≤M或m≤2|f(x)dx≤M, 由介值定理.存在ξ∈[0,1],使得f’(ξ)=2∫
0
1
f(x)dx.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/edr4777K
0
考研数学一
相关试题推荐
方程(xy2+x)dx+(y一x2y)dy=0的通解是_________.
将函数f(x)=展开成x的幂级数.
求幂级数的收敛区间与和函数f(x).
设f(x)在[a,b]上二阶可导,f(a)=f(b)=0.试证明至少存在一点ξ∈(a,b),使
设α1,α2,α3,α4,β为四维列向量组,A=(α1,α2,α3,α4),已知方程组Ax=β的通解是(一1,1,0,2)T+k(1,一1,2,0)T.(Ⅰ)β能否由α1,α2,α3线性表示?(Ⅱ)求α1,α2,α3,α4,β的一个极大线性无关组.
设n维向量α1,α2,…,αs的秩为r,则下列命题正确的是()
[*](2)根据幂级数展开式的唯一性,得u(x)在x0=1处高阶导数的[*]
质量为M,长为l的均匀杆AB吸引着质量为m的质点C,C位于AB的延长线上并与近端距离为a,已求得杆对质点C的引力F=,其中k为引力常数.现将质点C在杆的延长线上从距离近端r0处移至无穷远时,则引力做的功为_______.
一半球形雪堆融化速度与半球的表面积成正比,比例系数为k>0,设融化过程中形状不变,设半径为r0的雪堆融化3小时后体积为原来的,求全部融化需要的时间.
判断级数的敛散性.
随机试题
在系统按复杂程度和层次不同的分类中,较复杂、较高层次的系统是【】
接触一定剂量污染物的个体,体内发生的生物学改变称为
A.6个月B.1年C.2年D.3年E.5年按照《药品生产质量管理规范》规定销售记录应保存至药品有效期后
提升钢丝绳水平荷载的绝大部分由井架的()结构承受。
首次公募股票申请人最近3年内()的,属于重大违法行为。
长期过量摄入脂溶性维生素时()。
对在学校教育与管理之外发生的学生伤害事故,学校可以免责。()
调查表明,一年中任何月份,18到65岁的女性中都有52%在家庭以外工作。因此,18到65岁的女性中有48%是全年不在外工作的家庭主妇。以下哪项如果为真,最严重地削弱了上述论证?
均匀几何体Ω是直线L:绕z轴旋转一周而成曲面∑位于z=0与z=1之间的部分,则几何体Ω的质心为().
在理解误码率时,应该注意以下问题,其中叙述中正确的是______。Ⅰ.应衡量数据传输系统正常工作状态下传输可靠性的参数Ⅱ.正对于实际的数据传输系统,可以笼统地说误码率越低越好Ⅲ.对于实际数据传输系统,如果传输的不是二进制码元,
最新回复
(
0
)