首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中 (1)A2. (2)P-1AP. (3)AT. (4). α肯定是其特征向量的矩阵共有( )
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中 (1)A2. (2)P-1AP. (3)AT. (4). α肯定是其特征向量的矩阵共有( )
admin
2016-03-05
67
问题
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中
(1)A
2
.
(2)P
-1
AP.
(3)A
T
.
(4)
.
α肯定是其特征向量的矩阵共有( )
选项
A、1个
B、2个
C、3个
D、4个
答案
B
解析
由Aα=λα,α≠0,有A
2
α=A(λα)=λAα=λ
2
α,α≠0,即α必是A
2
属于特征值λ
2
的特征向量.
又
知α必是矩阵
属于特征值
的特征向量.关于(2)和(3)则不一定成立.这是因为 (P
一1
AP)(P
一1
Aα)=P
一1
Aα=λP
一1
α,按定义,矩阵P
一1
AP的特征向量是P
一1
α.因为P
一1
α与α不一定共线,因此α不一定是P
一1
AP的特征向量,即相似矩阵的特征向量是不一样的.线性方程组(λE—A)x=0与(λE一A
T
)x=0不一定同解,所以α不一定是第二个方程组的解,即α不一定是A
T
的特征向量.所以应选B.
转载请注明原文地址:https://www.kaotiyun.com/show/ea34777K
0
考研数学二
相关试题推荐
设总体X的概率密度为其中θ(θ>0)为未知参数,X1,X2,…,Xn为来自总体X的简单随机样本,则θ的最大似然估计量为________.
设函数f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f”(x)|≤b,其中a,b为常数,证明:对任意0<x<1有|f’(x)|≤2a+.
n维向量α=1/2.0,…,0,1/2)T,A=E—4ααT,β=(1,1,…,I)T,则Aβ的长度为
设X为随机变量,E(X)=μ,D(X)=σ2,则对任意常数C有().
设齐次线性方程组(I)为又已知齐次线性方程组(Ⅱ)的基础解系为α1=(0,1,1,0)T,α2=(一1,2,2,1)T.试问a,b为何值时,(I)与(Ⅱ)有非零公共解?并求出所有的非零公共解.
设当x→0时,是等价的无穷小,则常数a=__________.
设f(x)在x=0的某邻域内有定义,则g(x)=f(x)·|x|在x=0处可导的充要条件是()
已知α1=(1,2,3)T,α2=(-2,1,-1)T和β1=(4,-2,α)T,β2=(7,b,4)T是等价向量组,则参数a,b应分别为()。
设y1(x),y2(x)为二阶齐次线性微分方程y”+P(x)y’+q(x)y=0的两个特解,y1≠0,y2≠0,则y=c1y1(x)+c2y2(x)(其中c1,c2为任意常数)为该方程通解的充要条件为().
随机试题
企业承担社会责任的利益:
煨制品含药屑、杂质不得超过
()主要为信息传递和资源共享提供高速、方便的信息通道。
()应永久保存。
国内某有进出口经营权的服装加工公司与台湾某公司签订一份为期5年的来料加工纯棉服装的协议。在协议中订明由台湾某公司不作价提供工业缝纫机(属机电产品进口许可证管理、法定检验)50台作为加工生产专用。在首期加工合同中订明由我方为台湾某公司来料加工5万打纯棉男式
下列属于认知过程的有()。
公安机关及其人民警察在行使行政职权时的下列哪种情形应给予公安行政赔偿?()
依据我国民事诉讼法的有关规定,下列哪一类案件可以申请再审?
根据下面材料回答下列问题。2012年1—10月我国汽油产量累计比上年同期多()。
Goinghungryisamajorcontributortoillhealth,particularlyamongchildren,andanewreportrevealshowlong-lastingtheda
最新回复
(
0
)