首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1999年)设函数y(x)(x≥0)二阶可导,且y′(x)>0,y(0)=1。过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并
(1999年)设函数y(x)(x≥0)二阶可导,且y′(x)>0,y(0)=1。过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并
admin
2019-03-07
38
问题
(1999年)设函数y(x)(x≥0)二阶可导,且y′(x)>0,y(0)=1。过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S
1
,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S
2
,并设2S
1
一S
2
恒为1,求此曲线y=y(x)的方程。
选项
答案
如图,曲线y=y(x)上点P(x,y)处的切线方程为Y—y(x)=y′(x)(X—x),所以切线与x轴的交点为[*] [*] 由于y′(x)>0,y(0)=1,因此y(x)>0(x>0),于是 [*] 根据题设2S
1
一S
2
=1,即[*]两边对x求导并化简得yy"=(y′)
2
,这是可降阶得二阶常微分方程,令p=y′,则 [*] 则上述方程可化为[*]分离变量得[*]解得p=C
1
y,即[*]从而有 y=e
C
1
x+C
2
根据y(0)=1,y′(0)=1,可得C
1
=1,C
2
=0,故所求曲线得方程为y=e
x
。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/eH04777K
0
考研数学一
相关试题推荐
设随机变量X的密度函数为f(x)=(λ>0),则概率P{λ<X<λ+a}(a>0)的值()
设随机变量X~E(2),Y~E(1),且相关系数ρXY=-1,则()
设α1,α2,β1,β2均是三维向量,且α1,α2线性无关,β1,β2线性无关,证明存在非零向量γ,使得γ既可由α1,α2线性表出,又可由β1,β2线性表出。当α1=,α2=,β1=,β2=时,求出所有的向量γ。
设R3中的两个基α1,α2,α3和β1,β2,β3之间满足β1=α1-α2,β2=α2-α3,β3=2α3,向量β在基α1,α2,α3下的坐标为x=(2,-1,3)T,则β在基β1,β2,β3下的坐标为_________。
设线性方程组与方程x1+2x2+x3=a-1(2)有公共解,求a的值及所有公共解。
解齐次方程组
(2017年)若曲线积分在区域D={(x,y)|x2+y2<1}内与路径无关,则a=___________。
(2014年)设f(x,y)是连续函数,则
(2006年)设函数y=f(x)具有二阶导数,且f′(x)>0,f"(x)>0,△x为自变量x在X0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则()
设f(x)在[a,b]连续,在(a,b)可导,f(a)=f(b),且f(x)不恒为常数,求证:在(a,b)内存在一点ξ,使得f’(ξ)>0.
随机试题
有逃税的行为,经税务机关依法下达追缴通知后,补缴应纳税款,缴纳滞纳金,已受行政处罚的,一律不予追究刑事责任。
平行度属于位置公差。
对酶活性部位的描述,下述哪个是正确的
商品流通渠道中最重要的成员是()。
一般资料:求助者,女性,16岁,某中学高一年级学生。案例介绍:求助者自幼生长在农村,半年前考入市里的中学,学校的教室和宿舍都在楼房里。求助者第一次在窗边站立时非常害怕,有一次和同学参观电视塔,求助者站在嘹望平台上内心极其恐惧,出现胸闷、心慌、全身
关于职业纪律,正确的说法是()。
注意事项1.本题本由给定资料与作答要求两部分构成。考试时限为150分钟。其中,阅读给定资料参考时限为40分钟,作答参考时限为110分钟。满分为100分。2.监考人员宣布考试开始时,你才可以开始答题。3.请在题本、答题卡指定位置填写自己的姓名,填涂准考
齐白石是在各方面造诣都很高的现代绘画大师,他跨越了两个世纪,活到将近百岁。继清末民初海派画家之后,他把传统中国画推到了一个新的________。他的人品、绘画、诗词、书法、篆刻,无不________。填入划横线部分最恰当的一项是()。
A、 B、 C、 D、 D
Theconceptofobtainingfreshwaterfromicebergsthataretowedtopopulatedareasandaridregionsoftheworldwasoncetrea
最新回复
(
0
)