首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶非零矩阵,且A2=A,r(A)=r(0<r<n).求|5E+A|.
设A为n阶非零矩阵,且A2=A,r(A)=r(0<r<n).求|5E+A|.
admin
2017-09-15
86
问题
设A为n阶非零矩阵,且A
2
=A,r(A)=r(0<r<n).求|5E+A|.
选项
答案
因为A
2
=A[*]A(E-A)=O[*]r(A)+r(E-A)=n[*]A可以对角化. 由A
2
=A,得|A|.|E-A|=0,所以矩阵A的特征值为λ=0或1. 因为r(A)=r且0<r<n,所以0和1都为A的特征值,且λ=1为r重特征值,λ=0为n-λ重特征值, 所以5E+A的特征值为λ=6(r重),λ=5(n-r重),故|5E+A|=5
n-r
×6
r
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/eBk4777K
0
考研数学二
相关试题推荐
A、 B、 C、 D、 C
[*]
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求矩阵A.
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求A的属于特征值3的特征向量.
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求A的特征值与特征向量;
设n,元线性方程组Ax=b,其中当a为何值时,该方程组有无穷多解,并求通解.
设n,元线性方程组Ax=b,其中当a为何值时,该方程组有唯一解,并求x1;
设矩阵A与B相似,且求a,b的值;
随机试题
按审计与被审计单位经济业务发生的时间之间的关系,可以将审计分为_________、_________和_________。
过氧化物酶染色呈阴性的细胞是
如果某药血浓度是按一级动力学消除,这就表明
产前检查应1周1次腹部检查可区分胎头胎体
急性肾衰竭少尿期最常见的酸碱失衡是()
委托人可根据监理人的工作情况,进行奖励。具体内容由双方在( )中规定。
预计资产未来现金流量应当以资产的当前状况为基础,需要考虑()。
段落中除首行以外的其他各行与左侧边界保持一定的距离的是___________缩进。
学习策略是外部的操作程序,与内部的调控活动无关。()
下列行为中,构成拒不执行判决、裁定罪的有()。
最新回复
(
0
)