首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上二阶可导,且f(0)=f(1)=0.证明:存在ξ∈(0,1),使得f"(ξ)=.
设f(x)在[0,1]上二阶可导,且f(0)=f(1)=0.证明:存在ξ∈(0,1),使得f"(ξ)=.
admin
2017-08-28
44
问题
设f(x)在[0,1]上二阶可导,且f(0)=f(1)=0.证明:存在ξ∈(0,1),使得f"(ξ)=
.
选项
答案
令φ(x)=(x一1)
2
f’(x),显然φ(x)在[0,1]上可导.由f(0)=f(1)=0,根据罗尔定理,存在c∈(0,1),使得f’(c)=0,再由φ(c)=φ(1)=0,根据罗尔定理,存在ξ∈(c,1)[*](0,1),使得φ’(ξ)=0,而φ’(x)=2(x一1)f’(x)+(x一1)
2
f"(x),所以2(ξ一1)f’(ξ)+(ξ一1)
2
f"(ξ)=0,整理得[*].
解析
转载请注明原文地址:https://www.kaotiyun.com/show/e9r4777K
0
考研数学一
相关试题推荐
设S为上半球面x2+y2+z2=a2,z≥0,a>0.下列第一型或第二型曲面积分不为零的是()
幂级数的和函数为__________.
设随机变量X服从正态分布N(0,1),对给定的a∈(0,1),数ua满足P{X>ua}=a,若P{|X|<x}=a,则x等于().
求下列向量组的一个极大线性无关组,并把其余向量用极大线性无关组线性表示:α1=(1,3,2,0),α2=(7,0,14,3),α3=(2,-1,0,1),α4=(5,1,6,2),α4=(2,-1,4,1).
用初等行变换化增广矩阵为阶梯形[*]
设y(x)是微分方程y’’+(x+1)y’+x2y=ex的满足y(0)=0,3,y’(0)=1的解,并设存在且不为零,则正整数k=________,该极限值=________.
设函数f(x)具有二阶连续导数,且f(x)>0,f’(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是
(2004年试题,三)设有方程xn+nx一1=0,其中n为正整数.证明此方程存在唯一正实根xn,并证明当α>1时,级数收敛.
当x→1时,函数的极限().
一生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重50千克,标准差为5千克,若用最大载重为5吨的汽车承运,试利用中心极限定理说明每辆最多可以装多少箱才能保障不超载的概率大于0.9777(φ(2)=0.977,其中(x)是标准正态分布函数)
随机试题
单件产品的调味品成本也称为________。
患者,男,35岁。固定义齿修复缺失,以为基牙的条件是
下列不属于抗消化性溃疡的药是
北方股份有限公司(以下简称北方公司)为增值税一般纳税人,适用的增值税税率为17%(似定凡资料中涉及的其他企业,需缴纳增值税的,适用的增值税税率均为17%)。2015年和2016年北方公司发生如下经济业务:(1)2015年1月1日,北方公司应收南方公司货款
风是地球上的一种自然现象,它是由太阳辐射热引起的。太阳照射到地球表面,地球表面各处受热不同,产生温差,从而引起大气的对流运动形成风。而我们在生活中所说的“风挺大的”、“没什么风”,谈论的是风速。风速是指空气在单位时间内流动的水平距离。根
行为人为民事法律行为可以采用的方式有
TodaytherearethreedifferentkindsofNewYorkers:thepeoplewhoactasiftheywerebornhere:thepeoplewhoarehereand
A、 B、 C、 C由“你的杯子里没多少橙汁了。”可知图C与句意相符。关键词为little。
Whycouldn’tthemanputonmoreweight?
A、BecausemenontheEarthareprotectedbytheatmosphere.B、Becauseradiationonlyhaveshort-termeffectsonmenontheEarth
最新回复
(
0
)