首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,|f(x)dx=0.证明: (1)存在c∈(a,b),使得f(c)=0; (2)存在ξi∈(a,b)(i=1,2),且ξ1≠ξ2,使得f′(ξi)-f(ξi)=0(i=1,2);
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,|f(x)dx=0.证明: (1)存在c∈(a,b),使得f(c)=0; (2)存在ξi∈(a,b)(i=1,2),且ξ1≠ξ2,使得f′(ξi)-f(ξi)=0(i=1,2);
admin
2022-08-19
77
问题
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,|f(x)dx=0.证明:
(1)存在c∈(a,b),使得f(c)=0;
(2)存在ξ
i
∈(a,b)(i=1,2),且ξ
1
≠ξ
2
,使得f′(ξ
i
)-f(ξ
i
)=0(i=1,2);
(3)存在ξ∈(a,b),使得f″(ξ)=f(ξ);
(4)存在η∈(a,b),使得f″(η)-3f′(η)+2f(η)=0.
选项
答案
(1)令F(x)=∫
a
x
f(t)dt,则F(x)在[a,b]上连续,在(a,b)内可导,且F′(x)=f(x). 故存在c∈(a,b),使得 ∫
a
b
f(x)dx=F(b)-F(a)=F′(c)(b-a)=f(c)(b-a)=0,即f(c)=0. (2)令h(x)=e
x
f(x),因为h(a)=h(c)=h(b)=0,所以由罗尔定理,存在ξ
1
(a,c),ξ
2
∈(c,b),使得h′(ξ
1
)=h′(ξ
2
)=0, 而h′(x)=e
x
[f′(x)+f(x)]且e
x
≠0,所以f′(ξ
i
)+f(ξ
i
)=0(i=1,2). (3)令φ(x)=e
-x
[f′(x)+f(x))],φ(ξ
1
)=φ(ξ
2
)=0,由罗尔定理,存在ξ=(ξ
1
,ξ
2
)[*](a,b),使得φ′(ξ)=0, 而φ′(x)=e
-x
[f″(x)-f(x)]且e
-x
≠0,所以f″(ξ)=f(ξ). (4)令g(x)=e
-x
f(x),g(a)=g(c)=g(b)=0, 由罗尔定理,存在η
1
(a,c),η
2
∈(c,b),使得g′(η
1
)=g′(η
2
)=0, 而g′(x)=e
-x
[f′(x)-f(x)]且e
-x
≠0,所以f′(η
1
)-f(η
1
)=0,f′(η
2
)-f(η
2
)=0. 令φ(x)=e
-2x
[f′(x)-f(x)],φ(η
1
)=φ(η
2
)=0, 由罗尔定理,存在η,(η
1
,η
2
)[*](a,b),使得φ′(η)=0, 而φ′(x)=e
-2x
[f″(x)-3f′(x)+2f(x)]且e
-2x
≠0, 所以f″(η)-3f′(η)+2f(η)=0.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/dVR4777K
0
考研数学三
相关试题推荐
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
设bn为两个正项级数.证明:(1)若bn收敛,则an收敛;(2)若an发散,则bn发散.
设un>0(n-1,2,…),Sn=u1+u2+…+un.证明:收敛.
设a1=2,an+1=(n=1,2,…).证明:(1)an存在;(2)级数收敛.
设级数cn收敛,又an≤bn≤cn(n=1,2,…).证明:级数bn收敛.
证明:当x>0时,
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),且f(a)=0.证明:存在ξ∈(a,b),使得
随机试题
媒介公众
休克时心肌受损的机制中不包括下列哪一项?()
女,45岁。接触性出血、白带增多半年。妇科检查:阴道外观正常,宫颈糜烂状,子宫正常大小,双侧附件区无明显增厚。该患者宜首选的确诊检查是
经饮食传播的疾病是( )。经性接触传播的疾病是( )。
设计教学过程应注意哪些问题?
下列属于思想政治课程标准中情感态度价值观目标的是()。①提高主动参与经济生活的能力②关注社会发展,诚实守信③尊重世界各民族的优秀文化④获得选择人生发展道路的相关知识
A、6B、9C、14D、21C11+15=2×13,6+10=2×8,则?+32=2×23,?=14,故选C。
根据《商标法》规定,下列表述正确的是()。
[*]
【H1】【H11】
最新回复
(
0
)