首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。 求正交矩阵Q和对角矩阵A,使得QTAQ=A。
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。 求正交矩阵Q和对角矩阵A,使得QTAQ=A。
admin
2018-02-07
72
问题
设三阶实对称矩阵A的各行元素之和均为3,向量α
1
=(一1,2,一1)
T
,α
2
=(0,一1,1)
T
是线性方程组Ax=0的两个解。
求正交矩阵Q和对角矩阵A,使得Q
T
AQ=A。
选项
答案
因为A是实对称矩阵,所以α与α
1
,α
2
正交,只需将α
1
与α
2
正交化。 由施密特正交化法,取 β
1
=α
1
,β
2
=α
2
-[*]。 再将α,β
1
,β
2
单位化,得 [*] 令Q=(η
1
,η
2
,η
3
),则Q
-1
=Q
T
,且 Q
T
AQ=[*]。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/dTk4777K
0
考研数学二
相关试题推荐
[*]
设F(x,y)是一个二维随机向量(X,Y)的分布函数,x1
求下列隐函数的导数(其中,a,b为常数):(1)x2+y2-xy=1(2)y2-2axy+b=0(3)y=x+lny(4)y=1+xey(5)arcsiny=ex+y
求曲线上点(1,1)处的切线方程与法线方程.
设A是n(n>1)阶矩阵,满足Ak=2E(k>2,k∈Z+),则(A+)k=().
设y=e-x是微分方程xy’+p(x)y=x的一个解,求此微分方程满足条件y|x=ln2=0的特解。
设A为3阶实对称矩阵,A的秩为2,且求A的所有特征值与特征向量;
已知二次型f(x1,x2,x3)=(1-a)x22+(1-a)x22+2x32+2(1+a)x1x2的秩为2.求方程f(x1,x2,x3)=0的解.
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.将β1,β2,β3用α1,α2,α3线性表示.
二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2的秩为_________.
随机试题
在下列哪种情况下医学家长主义仍然是有效的,有时甚至是唯一有效的模式
区别轻症肺炎与重症肺炎的重要依据是
建设工程发生质量事故,有关单位应当在24小时内向当地建设行政主管部门报告。()
在下列选项中,属于我国法定的证据种类的有()。
从域名www.sina.com.cn可以看出,这个站点是中国的一个()。
下列有关资产减值的表述中,正确的有()。
测定泡菜样品中亚硝酸盐的含量时,氢氧化铝乳液的作用是()
哪一年进山口总额突破20亿元?( )。1974年至1990年的进口年增长额大约是( )。
下面是20世纪二三十年代中国共产党内关于革命道路问题的几组材料:材料1①乡村是统治阶级的四肢,城市才是他们的头脑与心腹,单只斩断了他的四肢,而没有斩断他的头脑,炸裂他的心腹,还不能制他的最后的死命。——摘自李立三:《新的革命高潮前面的诸问题》(193
【】权限允许修改数据,但不允许删除数据。
最新回复
(
0
)