首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知方程组 的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T。试写出线性方程组 的通解,并说明理由。
已知方程组 的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T。试写出线性方程组 的通解,并说明理由。
admin
2018-02-07
51
问题
已知方程组
的一个基础解系为(b
11
,b
12
,…,b
1,2n
)
T
,(b
21
,b
22
,…,b
2,2n
)
T
,…,(b
n1
,b
n2
,…,b
n,2n
)
T
。试写出线性方程组
的通解,并说明理由。
选项
答案
由题意可知,线性方程组(2)的通解为 y=c
1
(a
11
,a
12
,…,a
1,2n
)
T
+c
2
(a
21
,a
22
,…,a
2,2n
)
T
+…+c
n
(a
n1
,a
n2
,…,a
n,2n
)
T
, 其中c
1
,c
2
,…,c
n
是任意的常数。 这是因为: 设方程组(1)和(2)的系数矩阵分别为A,B,则根据题意可知AB
T
=O,因此 BA
T
=(AB)
T
=O, 可见A的n个行向量的转置为(2)的n个解向量。 由于B的秩为n,所以(2)的解空间的维数为2n—r(B)=2n一n=n,又因为A的秩等于2n与(1)的解空间的维数的差,即n,因此A的n个行向量是线性无关的,从而它们的转置向量构成(2)的一个基础解系。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/dHk4777K
0
考研数学二
相关试题推荐
设A,B为同阶可逆矩阵,则().
设,证明fˊ(x)在点x=0处连续.
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证:(1)存在η∈(1/2,1),使f(η)=η;(2)对任意实数λ,必存在ε∈(0,η),使得fˊ(ε)-λ[f(ε)-ε]=1
求f(x)的值域。
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.问k为何值时,f(x)在x=0处可导.
考虑二元函数的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在.若用“P→Q”表示可由性质P推出性
设A为n阶非零矩阵,E为n阶单位矩阵.若A3=0,则
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求矩阵A.
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求A的特征值与特征向量;
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记。(1)证明二次型f对应的矩阵为2ααT+ββT;(2)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22.
随机试题
A、Therewerenoplanetswithoutmoons.B、TherewasnoairorwateronJupiter.C、Lifewasnotpossibleinouterspace.D、Themys
噪声引起听力损害的早期特征是
下列哪一项不是影响免疫耐受形成的抗原因素
阿片类药物中毒的首选拮抗剂是()。
甲是A国驻B国大使馆的商务参赞,乙是C国驻B国大使馆的随员。甲与B国人丙发生债务纠纷。甲向B国法院对丙提起民事诉讼,丙对甲就同一债务关系提起反诉,并要求乙作为证人出庭作证。根据国际法规则,下列哪个判断是正确的?()
某商品流通企业某种商品销售量的第20个周期的一次移动平均数M20(1)=96,二次移动平均数M20(2)=88,取n=5,用二次移动平均数法预测第25周期的销售量为()。
下列各项中,属于酌量性固定成本的是()。
近景性动机指与近期目标相联系的一类动机。它又可分为间接近景性动机与直接近景性动机。有的学生“为老师的鼓励而努力学习”“为家长的奖励而努力学习”“为同学们瞧得起自己而努力学习”等,就属于直接近景性动机。()
古代社学最早产生于()。
Whetheryou’reaNewJerseymallratorafarmerinIndia,beingpoorcanexhaustyoursmarts.Thefindingsindicatethatan
最新回复
(
0
)