首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值λ的特征向量是( )
设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值λ的特征向量是( )
admin
2019-01-19
50
问题
设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P
-1
AP)
T
属于特征值λ的特征向量是( )
选项
A、P
-1
α。
B、P
T
α。
C、Pα。
D、(P
-1
)
T
α。
答案
B
解析
设β是矩阵(P
T
AP)
T
属于λ的特征向量,并考虑到A为实对称矩阵A
T
=A,有
(P
-1
AP)
T
β=λβ,即P
T
A(P
-1
)
T
β=λβ。
把四个选项中的向量逐一代入上式替换β,同时考虑到Aα=λα,可得B选项正确,即
左端=P
T
A(P
-1
)
T
(P
T
α)=P
T
Aα=P
T
λα=λP
T
α=右端,
故选B。
转载请注明原文地址:https://www.kaotiyun.com/show/d9P4777K
0
考研数学三
相关试题推荐
设矩阵A=可逆,向量α=是矩阵A*的一个特征向量,λ是α对应的特征值,其中A*是矩阵A的伴随矩阵.试求a、b和λ的值.
设f(χ)在(-∞,+∞)上二阶导数连续f(0)=0,g(χ)=则a=_______使g(χ)在(-∞,+∞)上连续.
设二维随机变量的联合概率密度为(I)求常数k;(Ⅱ)求关于X,Y的边缘概率密度fX(x),fY(y),并问X与Y是否独立?(Ⅲ)计算P{X+Y≤1};(Ⅳ)求Z=Y—X的概率密度.
已知某商品的需求量Q和供给量S都是价格p的函数:其中常数a>0,b>0,又价格p是时间t的函数,且满足假设当t=0时价格为1,试求价格函数p(t);
设函数f(x)在x=0的某邻域内具有二阶连续导数,且则
讨论级数的敛散性.
如图1—6—1所示,设函数u(x,y)=∫1/xyds∫1/sxf(t,s)dt(x>0,y>0).(1)当f连续时,求u"yx(x,y)和u"xy(x,y).(2)当f具有连续的一阶偏导数时,进一步再求u"xx(x,y)和u"yy(x,y).
设f(x)在[一a,a]上具有三阶连续导数,且满足f’(x)=x2+∫0xtf(x—t)dt,f(0)=0,证明:存在一点ξ∈[一a,a],使得a4|f"’(ξ)|=12∫—aa|f(x)|dx.
(2015年)设函数f(x)在定义域I上的导数大于零.若对任意的x0∈I,曲线y=f(x)在点(x0,f(x0))处的切线与直线x=x0及x轴所围成区域的面积恒为4,且f(0)=2,求f(x)的表达式.
将下列函数在指定点处展开为泰勒级数:(Ⅰ),在x=1处;(Ⅱ)ln(2x2+x-3),在x=3处.
随机试题
InEnglish,thewordforthesniffingappendageonourfaceisnose.Japanesealsohappenstousetheconsonantninthisword(
A.AMYB.ALTC.GGTD.ACPE.ALP对于诊断骨肉瘤最敏感的是
患者在乘车时,由于急刹车,右膝前方受到撞击,出现右髋剧痛,髋关节运动障碍,处于屈曲、内收、内旋畸形状态。应诊断为()
新修本草(唐本草)载药晶珠本草载药
城市规划组织编制管理是制定城市规划的前期管理工作,城市规划的审批管理是制定城市规划的后期管理工作。且城市规划编制和审批是个间断的过程,有时间间隔。()
Thesmallsizeofthecomponentsofcomputerchipshasprovedunstoppable.Ineachnew(1)_____,thosecomponentsaresmalleran
一个磁盘存储器的存储容量为16GB(1GB=230Byte),8个盘片(16个记录面),每条磁道有512个扇区,每个扇区512个字节,每分钟8000转,定位时间(寻道时间)为4.25ms。该磁盘存储器的有效数据传输率是(1)。该磁盘存储器有(2)个柱面(磁
有以下程序voidswap(char*x,char*y){chart;t=*x;*x=*y;*y=t;}main(){char*s1="abc",*s2="123";swap(s
芝加哥期货交易所的英文缩写是()。
Accordingtothestatisticsin1992publishedbyDepartmentofEmployment36%ofDutchemployeesfelttiredafterwork.Accordi
最新回复
(
0
)