首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶矩阵A与3维向量x,使得向量组x,Ax,A2x线性无关。且满足A3x=3Ax一2A2x. 记P=(xAxA2x),求3阶矩阵B,使A=PBP—1;
已知3阶矩阵A与3维向量x,使得向量组x,Ax,A2x线性无关。且满足A3x=3Ax一2A2x. 记P=(xAxA2x),求3阶矩阵B,使A=PBP—1;
admin
2018-07-31
38
问题
已知3阶矩阵A与3维向量x,使得向量组x,Ax,A
2
x线性无关。且满足A
3
x=3Ax一2A
2
x.
记P=(xAxA
2
x),求3阶矩阵B,使A=PBP
—1
;
选项
答案
设 [*] 则由 AP=PB,得 (Ax A
2
x A
3
x)=(Ax A
2
x 3Ax一2A
2
x)=(x Ax A
2
x)[*] 上式可写成 Ax=a
1
x+b
1
Ax+c
1
A
2
x (1) A
2
x=a
2
x+b
2
Ax+c
2
A
2
x (2) 3Ax一2A
2
x=a
3
x+b
3
Ax+c
3
A
2
x (3) 由于x,Ax,A
2
x线性无关,故 由(1)式可得 a
1
=c
1
=0,b
1
=1 由(2)式可得
2
=b
2
=0,c
2
=1 由(3)式可得 a
3
=0,b
3
=3,c
3
=一2 从而 B=[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/d5g4777K
0
考研数学一
相关试题推荐
设f(x)在[0,a]上一阶连续可导,f(0)=0.令.
设f’(x)在[0,1]上连续且|f’(x)|≤M.证明:
设f(x)在[a,b]上连续且单调增加,证明:∫abxf(x)dx≥∫abf(x)dx.
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22—2y32,且A*+2E的非零特征值对应的特征向量为α=,求此二次型.
设A,B分别为m×n及n×s阶矩阵,且AB=O.证明:r(A)+r(B)≤n.
设A=有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
设A=相似于对角阵.求:(1)a及可逆阵P,使得P-1AP=为对角阵;(2)A100.
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设三阶方阵A,B满足关系式A-1BA=6A+BA,且A=,则B=_______。
随机试题
浅海处,一眼可见密密层层色彩斑斓的珊瑚礁,还有比珊瑚更________的鱼群游弋其间。海底也有峡谷,只见珊瑚礁猛地________于海底悬崖之下,当然也滑出了我们的视线。填入画横线部分最恰当的一项是()。
关于DNA双螺旋结构模型的叙述正确的是
阴虚感冒的代表方剂是
A.脓性白带B.稀薄脓性、黄绿色、泡沫状C.血性白带D.稀薄、均匀、白色分泌物E.白色豆渣样白带婴幼儿阴道炎分泌物为
下列不享有向最高国家权力机关提出法律议案提案权的是()。
锦上添花:雪中送炭与()在内在逻辑关系上最为相似。
红星中学的四位老师在高考前对某理科毕业班学生的前景进行推测,他们特别关注班里的两个尖子生。张老师说:“如果余涌能考上清华,那么方宁也能考上清华。”李老师说:“依我看这个班没人能考上清华。”王老师说:“不管方宁能否考上清华,余涌
下列关于网络体系结构的描述中,错误的是()。
关于Python对文件的处理,以下选项中描述错误的是
A.alreadyB.concernedC.enhanceD.focusedE.hardlyF.highlightedG.intensifyH.particularI.practic
最新回复
(
0
)