首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知β1、β2是非齐次线性方程组Ax=b的两个不同的解,α1、α2是对应齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解(一般解)必是( ).
已知β1、β2是非齐次线性方程组Ax=b的两个不同的解,α1、α2是对应齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解(一般解)必是( ).
admin
2013-07-05
91
问题
已知β
1
、β
2
是非齐次线性方程组Ax=b的两个不同的解,α
1
、α
2
是对应齐次线性方程组Ax=0的基础解系,k
1
,k
2
为任意常数,则方程组Ax=b的通解(一般解)必是( ).
选项
A、k
1
,α
1
+k
2
(α
1
+α
2
)+
B、k
1
α
1
+k
2
(α
1
一α
2
)+
C、k
1
α
1
+k
2
(β
1
+β
2
)+
D、k
1
α
1
+k
2
(β
1
一β
2
)+
答案
B
解析
本题考查解的性质与解的结构,从a
1
,a
1
是Ax=0的基础解系,知Ax=b的通解形式为k
1
η
1
+k
2
η
2
+ξ,其中,η
1
,η
2
是Ax=0的基础解系,ξ是Ax=b的解.由解的性质知:α
1
,α
1
+α
2
α
1
一α
2
,β
1
一β
2
都是Ax=0的解
是Ax=b.那么A中没有特解ξ,C中既没有特解ξ,且β
1
+β
2
也不是Ax=0的解.D中虽有特解,但α
1
,β
1
一β
2
的线性相关性不能判定,故A、C、D均不正确.惟B中,
是Ax=b的解,α
1
,α
1
一α
2
是Ax=0的线性无关的解,是基础解系.选B.
转载请注明原文地址:https://www.kaotiyun.com/show/caF4777K
0
考研数学三
相关试题推荐
中共八大确定的我国社会主义经济建设的方针是()
红军长征到达陕北后,毛泽东、中共中央用很大的精力,去总结历史经验,加强党的思想理论建设。1935年12月,毛泽东作了《论反对日本帝国主义的策略》的报告,这份报告()
结合材料回答问题:材料1国际清算银行近日发行了一本题为《绿天鹅》的新书,首次探讨可能引发下一次金融危机的“绿天鹅”事件。与“黑天鹅”不同,“绿天鹅”指的是气候领域可能出现的极具破坏力的现象,它可能给社会生活和经济增长造成巨大财产损失,进而引发金
只有推进供给侧结构性改革,提高供给体系质量,适应新需求变化,才能在更高水平上实现供求关系新的动态均衡,推动高质量发展。推进供给侧结构性改革的要求是
2022年1月1日,今年第1期《求是》杂志发表习近平总书记重要讲话《以史为鉴、开创未来,埋头苦干、勇毅前行》。习近平总书记指出,我们党历史这么长、规模这么大、执政这么久,如何跳出治乱兴衰的历史周期率?毛泽东同志在延安的窑洞里给出了第一个答案,这就是“只有让
设f(x)是处处可导的奇函数,证明:对任-b>0,总存在c∈(-b,b)使得fˊ(c)=f(b)/b.
下列函数在哪些点处间断,说明这些间断点的类型,如果是可去间断点,则补充定义或重新定义函数在该点的值而使之连续:
假设随机变量X1、X2、X3、X4相互独立,且同分布,P{Xi=0}=0.6,P{Xi=1}=0.4(i=1,2,3,4),求行列式的概率分布.
设则().
设随机变量X服从正态分布N(μ1,σ12),随机变量y服从正态分布N(μ2,σ22),且P{|X-μ1|<1}>P{|Y-μ2|<1},则必有().
随机试题
欧洲联盟的性质是()
风湿热关节炎的典型表现是
城市中杂乱的垃圾堆物、乱摆的货摊和五颜六色的招贴等,属于()。
小静做事力求完美,绝不允许有任何差错,稍有失误就极度焦虑。她平时也是这样要求同学们,导致同学们都躲着她。小静感到很苦恼,最适宜对小静进行的心理疏导方法是()。
()是研究工作进行之初所做的书面规划,是如何进行研究的具体设想,是研究实施的蓝图。
社会意识的相对独立性表现为( )。
(10,20]
设f(x)具有二阶连续导数,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为一全微分方程,求f(x)及此全微分方程的通解.
Iftheaveragehourlywageoftherank-and-filemanufacturingworkerin1919was$0.55,whichofthefollowingisclosesttothe
USimportpricesrecordedthebiggestdropinfivemonthsinNovemberasfoodandfuelcoststumbled(下跌),keepinginflationpres
最新回复
(
0
)