首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)一f(x)y]dx+[f’(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)一f(x)y]dx+[f’(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
admin
2017-08-31
78
问题
设f(x)二阶连续可导,f(0)=0,f
’
(0)=1,且[xy(x+y)一f(x)y]dx+[f
’
(x)+x
2
y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
选项
答案
令P(x,y)=xy(x+y)-f(x)y,Q(x,y)=f
’
(x)+x
2
y,因为[xy(x+y)一f(x)y]dx+[f
’
(x)+x
2
y]dy=0为全微分方程,所以[*],即f
’’
(x)+f(x)=x
2
, 解得f(x)=C
1
cosx+C
2
sinx+x
2
一2,由f(0)=0,f
’
(0)=1得C
1
=2,C
2
=1, 所以f(x)=2cosx+sinx+x
2
一2. 原方程为[xy
2
-(2cosx+sinx)y+2y]dx+(一2sinx+cosx+2x+x
2
y)dy=0,整理得 (xy
2
dx+x
2
ydy)+2(ydx+xdy)一2(ycosxdx+sinxdy)+(-ysinxdx+cosxdy)=0, 即d([*]x
2
y
2
+2xy一2ysinx+ycosx)=0, 原方程的通解为[*]x
2
y
2
+2xy-2ysinx+ycosx=C.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/cTr4777K
0
考研数学一
相关试题推荐
13/48
定积分的值等于
设可微函数f(x,y)在点(x0,y0)处取得极小值,则下列结论正确的是().
已知三阶矩阵B为非零向量,且B的每一个列向量都是方程组的解,(I)求λ的值;(Ⅱ)证明|B|=0.
设u(x,y)=u(r)(r=),当r≠0时有连续的二阶偏导数且满足则u=u(r)满足的常微分方程是_______.
设函数f(x,y)在区域D:x2+y2≤1上有二阶连续偏导数,且又Cr是以原点为心,半径为r的圆周,取逆时针方向,求
计算极限
某保险公司接受了10000辆电动自行车的保险,每辆车每年的保费为12元.若车丢失,则赔偿车主1000元.假设车的丢失率为0.006,对于此项业务,试利用中心极限定理,求保险公司:一年获利润不少于60000元的概率γ.
设二维随机变量(X,Y)的分布函数为:F(x,y)=A(B+arctan)(C+arctan),-∞<x<+∞,-∞<y<+∞.求:(X,Y)的概率密度f(x,y);
随机试题
当活塞式压缩机润滑油压力小于()MPa时,活塞式压缩机自动停机。
女,28岁,有10年的吸烟史。近3年来慢性咳嗽、咳白色泡沫痰,每年发病时间3个月以上。气管镜黏膜活检的病变应是
患者男性,50岁。因肝硬化腹水人院。住院期间患者突然出现淡漠少言,神情恍惚,衣冠不整,吐词不清。此时应警惕患者可能出现了
血源性肺脓肿
诊断椎间盘突出最直观的影像学检查是
下列书法家中均被称为“草圣”的是()。
简单描述配送的特点。
()要求应聘者对某一问题做出明确的答复。
Ifyouknowexactlywhatyouwant,thebestroutetoajobistogetspecializedtraining.Arecentsurveyshowsthatcompaniesl
在数据库技术中,实体-联系模型是一种
最新回复
(
0
)