首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设, 已知线性方程组Ax=b存在2个不同的解. (1)求λ,a; (2)求方程组Ax=b的通解.
设, 已知线性方程组Ax=b存在2个不同的解. (1)求λ,a; (2)求方程组Ax=b的通解.
admin
2019-08-01
60
问题
设
,
已知线性方程组Ax=b存在2个不同的解.
(1)求λ,a;
(2)求方程组Ax=b的通解.
选项
答案
(1)方法一 [*] 由线性方程组Ax=b存在2个不同解,得λ=-1,a=-2. 方法二 由线性方程组Ax=b有2个不同的解,知r(A)=r(A,6)<3,因此方程组的系数行列式 [*] 得λ=1或-1;而当λ=1时,r(A)=1≠r(A,b)=2,此时,Ax=b无解,所以λ=-1.由r(A)=r(A,b)得a=-2. (2)当λ=-1,a=-2时, [*] 故方程组Ax=b的通解为:[*],k为任意常数.
解析
本题考查方程组解的判定与通解的求法.由非齐次线性方程组存在2个不同解知对应齐次线性方程组有非零解,而且非齐次线性方程组有无穷多解.
转载请注明原文地址:https://www.kaotiyun.com/show/cPN4777K
0
考研数学二
相关试题推荐
f(x)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(-1,1),使得f’’’(ξ)=3.
设ξ为f(x)=arctanx在[0,a]上使用微分中值定理的中值,则为().
用变量代换x=sint将方程(1-x2)化为y关于t的方程,并求微分方程的通解.
设(ay-2xy2)dx+(bx2y+4x+3)dy为某个二元函数的全微分,则a=________,b=_________.
设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,又此曲线上的点(0,1)处的切线方程为y=x+1,求该曲线方程,并求函数y(x)的极值.
当x→0时下列无穷小是x的n阶无穷小,求阶数n:(Ⅰ)ex4-2x2-1;(Ⅱ)(1+tan2x)sinx-1;(Ⅲ)(Ⅳ)∫0xsint.sin(1-cost)2dt.
设f(x0)≠0,f(x)在x=x0连续,则f(x)在x0可导是|f(x)|在x0可导的()条件.
曲线(x-1)3=2上点(5,8)处的切线方程是_______.
求下列旋转体的体积V:(Ⅰ)由曲线x2+y2≤2x与y≥x确定的平面图形绕直线x=2旋转而成的旋转体;(Ⅱ)由曲线y=3-|x2-1|与x轴围成封闭图形绕直线y=3旋转而成的旋转体.
(2005年试题,一)设a1,a2,a3均为三维列向量,记矩阵A=(a1,a2,a3),B=(a1+a2+a3,a1+2a2+4a3,a1+3a2+9a3)如果|A|=1,那么|B|=__________
随机试题
党的十八届五中全会提出的“十三五”时期的发展理念是:
下列诗词中,借秋景抒情的有
骨骼的分类中,不正确的是
治疗胃痛之胃阴不足证,在主穴的基础上,可加用
5岁患儿突发寒战高热,左大腿下端深压痛,患肢不敢活动,白细胞总数升高。应首先考虑的诊断为
A.间歇性跛行B.静息痛C.肢体营养障碍D.下肢水肿E.红肿条索
被驱逐出境的外国人,自被驱逐出境之日起()内不准入境。
行为主义心理学的创始人是()
作品中的主人公实际年龄是:从姑娘的角度看,对中尉采取的做法是:
计算机网络中的结点在相互通信时必须遵循统一的()。
最新回复
(
0
)