首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求解下列方程: (Ⅰ)求方程xy’’=y’lny’的通解; (Ⅱ)求yy’’=2(yt2-y’)满足初始条件y(0)=1,y’(0)=2的特解.
求解下列方程: (Ⅰ)求方程xy’’=y’lny’的通解; (Ⅱ)求yy’’=2(yt2-y’)满足初始条件y(0)=1,y’(0)=2的特解.
admin
2018-06-27
89
问题
求解下列方程:
(Ⅰ)求方程xy’’=y’lny’的通解;
(Ⅱ)求yy’’=2(y
t
2
-y’)满足初始条件y(0)=1,y’(0)=2的特解.
选项
答案
(Ⅰ)此方程不显含y.令p=y’,则原方程化为xp’=plnp. 当p≠1时,可改写为[*],其通解为 ln|lnp|=ln|x|+C’,即lnp=C
1
x,即y’=e
C
1
x
. 这样,原方程的通解即为y=[*]e
C
1
x
+C
2
,其中C
1
≠0,C
2
为任意常数. 当p=1时,也可以得到一族解y=x+C
3
. (Ⅱ)此方程不显含x.令p=y’,且以),为自变量,[*],原方程可化为[*]=2(p
2
-p). 当p≠0时,可改写为[*],解为p-1=C
1
y
2
. 再利用p=y’,以及初始条件,可推出常数C
1
=1.从而上述方程为变量可分离的方程 y’=1+y
2
[*]其通解为y=tan(x+C
2
). 再一次利用初始条件y(0)=1,即得C
2
=[*].所以满足初始条件的特解为[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Pik4777K
0
考研数学二
相关试题推荐
若矩阵相似于对角阵A,试确定常数a的值;并求可逆矩阵P使P-1AP=A.
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.求:(1)A2.(2)矩阵A的特征值.
对于线性方程组讨论λ为何值时,方程组无解、有唯一解和有无穷多组解.在方程组有无穷多组解时,试用其导出组的基础解系表示全部解.
设f(x)在[0,1]上具有二阶导数.且满足条件|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c是(0,1)内任意一点,证明:.
设不恒为常数的函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b).证明:在(a,b)内至少存在一点ξ,使得f’(ξ)>0.
设函数f(x)在(-∞,+∞)内连续,且F(x)=∫0x(x-2t)f(t)dt,试证:(1)若f(x)为偶函数,则F(x)也是偶函数;(2)若f(x)单调不增,则F(x)单调不减.
设试求:函数f(a)的定义域;
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3=一2α1+3α3.求矩阵A的特征向量;
设n阶实对称矩阵A满足A2=E,且秩r(A+E)=k
随机试题
能使血糖浓度升高的激素有
闭经的不孕患者进行内分泌检查时,下列哪项不必要
猪支原体肺炎的流行病学特点是
苟家庄村村民由于环境污染一案向阳晋县法院提起民事诉讼,由于村民人数太多,决定进行代表人诉讼,下列推选诉讼代表人的方式正确的是:()
按照《施工合同文本》规定,在施工中由于()造成工期延误,经发包人代表确认,竣工日期可以顺延。
在项目实施阶段,应协调处理施工现场周围有关文物、古树等的保护工作,并承担相应费用的是()。
按照金融监管机构监管的范围划分,监管体制的类型有()。
幼儿园的教育内容是全面的、启蒙的,各领域的内容相互渗透,从不同角度促进幼儿()等方面的发展。
试论集会、游行、示威自由的特点及限制。
下列选项中,______不属于Java语言的简单数据类型。
最新回复
(
0
)