首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶矩阵A的特征值λ1=1,λ2=2,λ3=3对应的特征向量依次为α1=(1,1,1)T,α2=(1,2,4)T,α3=(1,3,9)T。 (Ⅰ)将向量β=(1,1,3)T用α1,α2,α3线性表示; (Ⅱ)求Anβ。
设三阶矩阵A的特征值λ1=1,λ2=2,λ3=3对应的特征向量依次为α1=(1,1,1)T,α2=(1,2,4)T,α3=(1,3,9)T。 (Ⅰ)将向量β=(1,1,3)T用α1,α2,α3线性表示; (Ⅱ)求Anβ。
admin
2017-12-29
15
问题
设三阶矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=3对应的特征向量依次为α
1
=(1,1,1)
T
,α
2
=(1,2,4)
T
,α
3
=(1,3,9)
T
。
(Ⅰ)将向量β=(1,1,3)
T
用α
1
,α
2
,α
3
线性表示;
(Ⅱ)求A
n
β。
选项
答案
(Ⅰ)设x
1
α
1
+x
2
α
2
+x
3
α
3
=β,即 [*] 解得x
1
=2,x
2
=一2,x
3
=1,故β=2α
1
一2α
2
+α
3
。 (Ⅱ)Aβ=2Aα
1
一2Aα
2
+Aα
3
,则由题设条件及特征值和特征向量的定义可得 A
n
β=2A
n
α
1
一2A
n
α
2
+A
n
α
3
=2α
1
一2×2
n
α
2
+3
n
α
3
=[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/cFX4777K
0
考研数学三
相关试题推荐
设向量组(Ⅰ)与向量组(Ⅱ),若(Ⅰ)可由(Ⅱ)线性表示,且r(Ⅰ)=r(Ⅱ)=r.证明:(Ⅰ)与(Ⅱ)等价.
设A是3阶矩阵,|A|=3,且满足|A2+2A|=0,|2A2+A|=0,则A*的特征值是________.
求函数y=excosx的极值.
设α1=[1,0,一1,2]T,α2=[2,一1,一2,6]T,α3=[3,1,t,4]T,β=[4,一1,一5,10]T,已知β不能由α1,α2,α3线性表出,则t=________.
设A,B,C为常数,B2一AC>0,A≠0.u(x,y)具有二阶连续偏导数。试证明:必存在非奇异线性变换ξ=λ1x+y,η=λ2x+y(λ1,λ2为常数),将方程
已知y1=xex+e2x和y2一xex+e-x是二阶常系数非齐次线性微分方程的两个解,则此方程为()
设f(x,y)在点(0,0)处连续,且其中a,b,c为常数.(1)讨论f(x,y)在点(0,0)处是否可微,若可微则求出df(x,y)|(0,0);(2)讨论f(x,y)在点(0,0)处是否取极值,说明理由.
已知二次型f(x1,x2,x3)=4x22一3x32+4x1x2—4x1x3+8x2x3。(1)写出二次型f的矩阵表达式;(2)用正交变换把二次型f化为标准形,并写出相应的正交矩阵。
方程y″-3y′+2y=excos2x的特解形式y*=().
设y=ex是微分方程xy’+p(x)y=x的一个解,求此微分方程满足条件y|x=ln2=0的特解.
随机试题
简述差异化战略。
通常电路分析的对象是()。
焊接过程中,由于熔化金属冷却速度慢,因此焊缝金属的化学成分是不均匀的,这种现象称为偏析。()
外汇市场最基本的交易方式是远期外汇交易。【】
关于腹直肌的描述,不正确的是
建设工程施工安全技术措施计划实施包括( )。
某高铁线路建设公司占用菜地3万平方米用于建设办公楼,另占用菜地4万平方米用于建设高铁线路,该地区耕地适用的耕地占用税定额税率为15元/平方米。该公司应缴纳耕地占用税()万元。
课外活动的形式是多样的,包括了群众性活动、小组活动和个人活动。以下有一种活动在形式上与其他三种不同,它是()。
在亚当.斯密所处的古典时期,经济学本来在财富增长和人的幸福之间是存在一个契合点的,即理性人趋利避害的自利性选择有一个经济伦理的约束,这便是后来帕累托改进条件所要求的不损人前提下的利己。可是经济学本身承担的是最大化利益的学科任务,并且不断引入数学工具和抽象逻
下列主体不需要进行税务登记的是()。
最新回复
(
0
)