首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知是n阶矩阵,求A的特征值、特征向量,并求可逆矩阵P使P—1AP=Λ。
已知是n阶矩阵,求A的特征值、特征向量,并求可逆矩阵P使P—1AP=Λ。
admin
2018-12-19
55
问题
已知
是n阶矩阵,求A的特征值、特征向量,并求可逆矩阵P使P
—1
AP=Λ。
选项
答案
A的特征多项式为 [*] =(λ一2n+1)(λ一n+1)
n—1
, 则A的特征值为λ
1
=2n一1,λ
2
=n一1,其中λ
2
=n一1为n一1重根。 当λ
1
=2n一1时,解齐次方程组(λ
1
E一A)x=0,对系数矩阵作初等变换,有 [*] 得到基础解系α
1
=(1,1,…,1)
T
。 当λ
2
=n一1时,齐次方程组(λ
2
E一A)x=0等价于x
1
+x
2
+…+x
n
=0,得到基础解系 α
2
=(一1,1,0,…,0)
T
,α
3
=(一1,0,1,…,0)
T
,…,α
n
=(一1,0,0,…,1)
T
, 则A的特征向量是k
1
α
1
和k
2
α
2
+k
3
α
3
+…+k
n
α
n
,其中k
1
≠0,k
2
,k
3
,…,k
n
不同时为0。 令[*],则有P
—1
AP=[*]。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/bjj4777K
0
考研数学二
相关试题推荐
计算二重积分其中
设f(x)在[0,1]连续,且f(0)=f(1),证明在[0,1]上至少存在一点ξ,使得f(ξ)
设f(x)为[一a,a]上的连续偶函数,且f(x)>0,令F(x)=∫-aa|x-t|f(t)dt当F(x)的最小值为f(a)一a2一1时,求函数f(x).
(2004年)设f(χ)=|sint|dt(Ⅰ)证明f(χ)是以π为周期的周期函数.(Ⅱ)求f(χ)的值域.
(2007年)设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,且α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5=4A3+E,其中E为3阶单位矩阵.(Ⅰ)验证α是矩阵B的特征向量,并求B的全部特征值与特征向量;
(2009年)设α,β为3维列向量,βT为β的转置.若矩阵αβT相似于,则βTα=_______.
(2008年)曲线y=(χ-5)的拐点坐标为_______.
(1987年)求微分方程χ=χ-y满足条件=0的特解.
(2002年)设y=y(χ)是二阶常系数微分方程y〞+py′+qy=e3χ满足初始条件y(0)=y′(0)=0的特解,则当χ→0时,函数的极限.【】
设方阵A1与B1合同,A2与B2合同,证明:合同.
随机试题
Access提供了哪几种方法创建数据访问页?
爱国主义教育是()
关于烧伤深度,下列哪项是错误的
A.Meigs综合征B.阿司匹林三联症C.Wegener肉芽肿D.Good-pasture综合征E.Kartagener综合征内脏转位、右位心、副鼻窦炎并支气管扩张称为
麻醉前为了抑制腺体分泌,保持呼吸道通畅,可选用
下列关于重新购建价格的说法中,正确的有()。
某市为编制“十四五”规划,委托一家咨询机构开展研究工作。咨询人员收集了该市近10年的地区生产总值(GDP),三次产业增加值及比重,城镇人口数量及比重数据,在此基础上分析当前该市经济发展阶段。【问题】(计算部分应列出计算过程,计算结果保留两位小数
(2016·河北)马克思主义哲学认为,物质运动的存在形式是()
长期以来我们在吃四大发明的老本,在一种________的怀旧安慰中构筑自己的民族自尊心。这种自尊心是必要的,但这种思想方法却制造着一种后顺的文化模式。因为后顾,我们对世界的许多新变化有一种阿Q式的“我祖先比你阔多了”的________。这正造就了我们的长期
【S1】【S8】
最新回复
(
0
)