首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B是满足AB=O的任意两个非零阵,则必有( ).
设A,B是满足AB=O的任意两个非零阵,则必有( ).
admin
2019-08-12
37
问题
设A,B是满足AB=O的任意两个非零阵,则必有( ).
选项
A、A的列向量组线性相关,B的行向量组线性相关
B、A的列向量组线性相关,B的列向量组线性相关
C、A的行向量组线性相关,B的行向量组线性相关
D、A的行向量组线性相关,B的列向量组线性相关
答案
A
解析
设A,B分别为m×n及n×s矩阵,因为AB=O,所以r(A)+r(B)≤n,因为A,B为非零矩阵,所以r(A)≥1,r(B)≥1,从而r(A)<n,r(B)<n,故A的列向量组线性相关,B的行向量组线性相关,选(A).
转载请注明原文地址:https://www.kaotiyun.com/show/beN4777K
0
考研数学二
相关试题推荐
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.(1)求矩阵A的特征值;(2)判断矩阵A可否对角化.
确定常数a,c,使得=c,其中c为非零常数.
令lnx=t,则[*],当t≤0时,f(t)=t+C1;当t>0时,f(t)=et+C2.显然f’(t)为连续函数,所以f(t)也连续,于是有C1=1+C2,[*]
已知4×5矩阵A=(α1,α2,α3,α4,α5),其中α1,α2,α3,α4,α5均为四维列向量,α1,α2,α4线性无关,又设α3=α1一α4,α5=α1+α2+α4,β=2α1+α2一α3+α4+α5,求Ax=β的通解。
利用导数证明:当x>1时,
f(x)在[0,1]上有连续导数,且f(0)=0,证明:存在ξ∈[0,1],使得
求极限:
考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导
设αi=(ai1,ai2,…,ain)T(i=1,2,…,r;r<n)是n维实向量,且α1,α2,…,αr线性无关.已知β=(b1,b2,…,bn)T是线性方程组的非零解向量,试判断向量组α1,…,αr,β的线性相关性.
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0。证明:在开区间(a,b)内至少存在一点ξ,使。
随机试题
洋地黄中毒最容易引起哪一项心电图表现
女性,30岁,因肥胖、痤疮半年入院,化验血皮质醇明显增高,小剂量地塞米松不能抑制,而能被大剂量地塞米松抑制,最可能的诊断是
脑血栓形成患者发病时间常在
客户的交易保证金不足,又未能按期货经纪合同约定的时间追加保证金的,期货经纪合同中约定不明确的,期货公司有权就其未平仓的期货合约强行平仓,强行平仓造成的损失,由()。
甲企业2018年度发生部分经营业务如下:(1)1月份取得国有土地4000平方米,签订了土地使用权出让合同,记载的出让金额为4000万元,并约定当月交付;然后委托施工企业建造仓库,工程4月份竣工,5月份办妥了验收手续。该仓库在甲企业账簿“固定资产”科目中记
下列说法错误的是()。
恐怖症是指病人持续地和非理性地害怕某一特定物体、活动或情境,这种恐惧相对于实际的威胁来说是夸大的和非理性的。根据上述定义,下列不属于恐怖症的是:
ReadthefollowingtextandanswerthequestionsbychoosingthemostsuitablesubheadingfromthelistA-Gforeachofthenu
Innineteenth-centuryAmerica,practicallyeverythingthatwasbuiltinvolvedwood.Pinewasespeciallyattractiveforbuilding
TechnologytounderstandandanalyzeCVsjustasahumanwouldbelaunchedinEuropebyrecruitmentsoftwareinnovatorPeopleGe
最新回复
(
0
)