首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1=(2,3,3)T,α2=(1,0,3)T,α3=(3,5,a+2)T,若β1=(4,-3,15)T可由α1,α2,α3线性表示,β2=(-2,-5,a)T不能由α1,α2,α3线性表示,则a=______.
已知α1=(2,3,3)T,α2=(1,0,3)T,α3=(3,5,a+2)T,若β1=(4,-3,15)T可由α1,α2,α3线性表示,β2=(-2,-5,a)T不能由α1,α2,α3线性表示,则a=______.
admin
2017-05-18
68
问题
已知α
1
=(2,3,3)
T
,α
2
=(1,0,3)
T
,α
3
=(3,5,a+2)
T
,若β
1
=(4,-3,15)
T
可由α
1
,α
2
,α
3
线性表示,β
2
=(-2,-5,a)
T
不能由α
1
,α
2
,α
3
线性表示,则a=______.
选项
答案
2
解析
β
1
可由α
1
,α
2
,α
3
线性表示,即方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
1
有解,β
2
不能由α
1
,α
2
,α
3
线性表示,即方程组y
1
α
1
+y
2
α
2
+y
3
α
3
=β
2
无解.由于这两个方程组的系数矩阵是一样的,因此可联合起来加减消元
(α
1
,α
2
,α
3
,β
1
,β
2
)
无论a为何值,方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
1
系数矩阵的秩与增广矩阵的秩总相等,故方程组总有解,即β
1
必可由α
1
,α
2
,α
3
线性表示.
而方程组y
1
α
1
+y
2
α
2
+y
3
α
3
=β
2
在a=2时由于系数矩阵的秩与增广矩阵的秩不相等,故方程组无解,即β
2
在a=2时不能由α
1
,α
2
,α
3
线性表示,两者取交集得到a=2.
转载请注明原文地址:https://www.kaotiyun.com/show/bcu4777K
0
考研数学一
相关试题推荐
[*]
设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份,随机地取一个地区的报名表,从中先后抽出两份.(I)求先抽到的一份是女生的概率p;(Ⅱ)已知后抽到的一份是男生表,求先抽到的一份是女生表的概率q.
已知两曲线y=f(x)与在点(0,0)处的切线相同,写出此切线方程,并求极限.
求下列已知曲线围成的平面图形绕指定的轴旋转而形成的旋转体的体积:xy=a2,y=0,x=a,x=2a(a>0)绕x轴和y轴;
具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性微分方程是
当x→0时,下列四个无穷小量中,哪一个是比其他三个更低阶的无穷小量?().
已知曲线在直角坐标系中由参数方程给出:x=t+e-1,y=2t+e-2t(t≥0).证明该参数方程确定连续函数Y=y(戈),z∈[1,+∞).
设f(x)=|x|sin2x,则使导数存在的最高阶数n=()
判断下列结论是否正确,并证明你的判断.(I)若xn<yn(n>N),且存在极限,则A<B;(Ⅱ)设f(x)在(a,b)有定义,又∈(a,b)使得极限=A,则f(x)在(a,b)有界;(Ⅲ)若=∞,则使得当0<|x-a|<δ时有界•
随机试题
在幻灯片放映中单击鼠标或按回车就显示下一张幻灯片。
下列情形中属于医疗事故的是
证实有无血管内溶血的试验是()(1990年)
传统习俗的作用是
男,63岁。呕血、排柏油状便,意识不清4小时。乙肝病史20年。其意识障碍最可能的是()
A.痛风B.风湿性关节炎C.类风湿关节炎D.退化性关节炎E.系统性红斑狼疮关节多次发炎但多无破坏和畸形()
浅埋暗挖法常用的预加固和预支护方法有()。
一个国家或地区旅游业赖以存在和发展的最基本条件是()。
中央银行的下列哪些活动会引起基础货币的减少()
Fromthefirstparagraph,wecanseethatVerizon’sannouncementofpricecuts______.Itcanbeconcludedfromthepassagetha
最新回复
(
0
)