首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
试分析下列各个结论是函数z=f(x,y)在点P0(x0,y0)处可微的充分条件还是必要条件.
试分析下列各个结论是函数z=f(x,y)在点P0(x0,y0)处可微的充分条件还是必要条件.
admin
2018-04-15
64
问题
试分析下列各个结论是函数z=f(x,y)在点P
0
(x
0
,y
0
)处可微的充分条件还是必要条件.
选项
答案
结论(1)~(5)中每一个分别都是z=f(x,y)在点P
0
(x
0
,y
0
)处可微的必要条件,而非充分条件.结论(7)是z=f(x,y)在点P
0
(x
0
,y
0
)处可微的充分非必要条件;而结论(6)是其既非充分又非必要条件. 因z=f(x,y)在点P
0
(x
0
,y
0
)处可微,故z=f(x,y)在点P
0
(x
0
,y
0
)处连续,即[*]=f(x
0
,y
0
),则极限[*]f(x,y)必存在,于是z=f(x,y)在点P
0
(x
0
,y
0
)某邻域有界. 结论(3)表示一元函数F(x)=f(x,y
0
)在x
0
处连续,G(y)=f(x
0
,y)在y
0
处连续,它是二元函数z=f(x,y)在点P
0
(x
0
,y
0
)处连续的必要条件,而非充分条件.而z=f(x,y)在点P
0
(x
0
,y
0
)处连续又是其可微的必要条件,且非充分条件. 只要在z=f(x,y)在P
0
(x
0
,y
0
)的全微分定义△z=A△x+B△y+o(ρ),ρ=[*]中取特殊情况,分别令△y=0与位△x0即证得结论(4). 因为由函数z=f(x,y)在(x
0
,y
0
)处可微知,f’
x
(x
0
,y
0
)与f’
y
(x
0
,y
0
)都存在,故曲面f(x,y)=z=0在(x
0
,y
0
,f(x
0
,y
0
))处法向量n=f’
x
(x
0
,y
0
)i+f’
y
(x
0
,y
0
)j-k不是零向量.于是结论(5)成立. 结论(6)的[*][f’
x
(x,y
0
)-f’
x
(x
0
,y
0
)]=0表示偏导函数f’
x
(x,y)在y=y
0
时的一元函数f’
x
(x,y
0
)在x
0
处连续,它仅是二元偏导函数f’
x
(x
0
,y
0
)在P
0
(x
0
,y
0
)处连续的一个必要条件,对[*][f’
y
(x
0
,y)-f’
y
(x
0
,y
0
)]=0有类似的结果.而z=f(x,y)在P
0
(x
0
,y
0
)处可微又是f’
x
(x,y),f’
y
(x,y)在P
0
(x
0
,y
0
)处连续的另一个必要条件,所以结论(6)既不是充分条件又不是必要条件. 结论(7)的等价形式是△x=f(x,y)-f(x
0
,y
0
)=o(ρ),ρ=[*],它是相应全微分定义中A=0,B=0的情形,则结论(7)是其可微的充分非必要条件.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/bYr4777K
0
考研数学一
相关试题推荐
设求A100.
设证明:当n≥3时,有An=An-2+A2一E;
证明:对任意的正整数n,都有成立.
设函数f(r)(r>0)有二阶连续导数,并设满足求u的一般表达式。
设随机变量(ξ,η)的概率密度为试求。
设二维随机变量(x,Y)在区域D上均匀分布,其中D={(x,y)}|x|+|y|≤1}。又设U=X+Y,V=X一Y,试求:(Ⅰ)U和V的概率密度fU(u)与fV(υ);(Ⅱ)U和V的协方差Cov(U,V)和相关系数ρUV。
设函数f(x)满足f(1)=0,f’(1)=2.求极限
设g(x)二阶可导,且f(x)=(Ⅰ)求常数a,使得f(x)在x=0处连续;(Ⅱ)求f’(x),并讨论f’(x)在x=0处的连续性.
设f(x)连续,且求f(x).
已知fn(x)满足fn’(x)=fn(x)+xn-1ex(n为正整数)且求函数项级数的和。
随机试题
个体遇到挫折时,把自己的不当、失误转嫁到他人身上,或把自己不能接受的欲望归结为他人的。这种心理防御机制称为
以下不是数据库加密方法的是()
患者,女,36岁。左眼流泪3年,泪囊区稍隆起,压迫泪囊区有脓液从下泪点溢出。该患者因故拒绝手术治疗,3个月后因左泪囊区红肿、疼痛2天而就诊,检查见局部明显隆起,皮肤红肿、硬。此时应诊断为
下列有关结核菌素皮肤试验局部硬结结果判读错误的是
脑血栓形成病人出现尿失禁是病变损害了
下例哪项不是白血病的病因
()是电信监管的基本原则之一。
天津是中国北方最大的沿海开放城市,素有“渤海明珠”之称。()
(2003年)设试补充定义f(1)使得f(x)在上连续.
WheredidthespeakermeetSusan?
最新回复
(
0
)