首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0.若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0. (1)证明α1,α2,…,αn线性无关; (2)求A的特征值、特征向量.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0.若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0. (1)证明α1,α2,…,αn线性无关; (2)求A的特征值、特征向量.
admin
2016-11-03
64
问题
设A是n阶矩阵,α
1
,α
2
,…,α
n
是n维列向量,且α
n
≠0.若Aα
1
=α
2
,Aα
2
=α
3
,…,Aα
n-1
=α
n
,Aα
n
=0.
(1)证明α
1
,α
2
,…,α
n
线性无关;
(2)求A的特征值、特征向量.
选项
答案
(1)设 k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0, ① 用A
n-1
左乘①,得到 k
1
A
n-1
α
1
+k
2
A
n-1
α
2
+…+k
n
A
n-1
α
n
=0. 注意到A
i
α
j
=0,i+j≥n+1.当i+j<n+1时,A
i
α
j
≠0.故 A
n-1
α
2
=0, A
n-1
α
3
=0,…,A
n-1
α
n
=0,A
n-1
α
1
≠0, 从而k
1
A
n-1
α
1
=0,即 k
1
A
n-1
α
1
=k
2
A
n-2
α
2
=…=k
1
Aα
n-1
=k
1
α
n
=0, 而α
n
≠0,故k
1
=0. 同法用A
n-2
,A
n-1
,…,A左乘式①可得 k
2
=k
3
=…=k
n-1
=0. 代入式①有k
n
α
n
=0,而α
n
≠0,故k
n
=0,所以α
1
,α
2
,…,α
n
线性无关. (2)因Aα
i
=α
i+1
(i=1,2,…,n—1),Aα
n
=0,故 A[α
1
,α
2
,…,α
n
]=[α
2
,α
3
,…,α
n
,0]=[α
1
,α
2
,…,α
n
][*] 因α
1
,α
2
,…,α
n
线性无关,故P=[α
1
,α
2
,…,α
n
]可逆,且p
-1
AP=[*]=B, 所以A~B,显然B的特征值全为0,所以A的特征值也全为0.又因 秩(A)=秩(B)=n—1, 故AX=0的基础解系只含一个解向量.因Aα
n
=0α
n
,而α
n
≠0,故A的关于0的特征向量为kα
n
(k≠0).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/bXu4777K
0
考研数学一
相关试题推荐
1
A、 B、 C、 D、 B
[*]
A、 B、 C、 D、 C
已知某股票一年以后的价格X服从对数正态分布,当前价格为10元,且EX=15,DX=4.求其连续复合年收益率的分布.
设A为n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,当A*=AT时.证明丨A丨≠0.
将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数等于
求曲面积分其中S是球面x2+y2+z2=4外侧在z≥0的部分.
已知齐次线性方程组(I)方程组仅有零解;(Ⅱ)方程组有非零解,在有非零解时,求此方程组的一个基础解系.
设f(x)=∫0tanxarctant2dt,g(x)=x—sinx,当x→0时,比较这两个无穷小的关系。
随机试题
公务员考核的方法有哪些?
普鲁卡因成人一次限量为丁卡因神经阻滞成人一次限量为
下述相关肝炎的描述不正确的是
患者男,35岁。近一周出现发热、头痛、食欲不振,外生殖器出现溃疡样改变,到皮肤科就诊,实验室检查:HAVIgG抗体阳性,梅毒螺旋体特异性抗体阳性,HIV抗体阴性。该患者处于疾病的哪个时期
气溶胶是指
某公司进口一批废物原料,货物到达口岸后,以下表述正确的是( )。
根据基期的不同确定方法增长量可分为()。
在情绪ABC理论中,C代表()。
小兰既不喜欢做家庭作业,又担心家长责骂,这时她所面临()。
A、纯鲜牛奶B、花色奶C、营养强化型鲜奶D、酸奶A
最新回复
(
0
)