首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求微分方程y"+4y’一5y=(3x一1)ex满足初始条件y(0)=0,y’(0)=1的特解.
求微分方程y"+4y’一5y=(3x一1)ex满足初始条件y(0)=0,y’(0)=1的特解.
admin
2020-10-21
55
问题
求微分方程y"+4y’一5y=(3x一1)e
x
满足初始条件y(0)=0,y’(0)=1的特解.
选项
答案
(1)先求y"+4y’一5y=0的通解. 特征方程为r
2
+4r一5=0,解得r
1
=一5,r
2
=1,所以y"+4y’一5y=0的通解为 Y=C
1
e
-5x
+C
2
e
x
,其中C
1
,C
2
为任意常数. (2)其次求y"+4y’ —5y=(3x—1)e
x
的一个特解. 因为λ=1是特征单根,令其一个特解为y
*x
=x(Ax+B)e
x
,则 (y
*
)’=(2Ax+B+Ax
2
+Bx)e
x
, (y
*
)"=(2A+4Ax+2B+Ax
2
+Bx)e
x
, 将其代入原方程,并消去e
x
,得 2A+6B+12Ax=3x一1, 比较等式两边x的系数,得 [*] 解得[*] (3)写出y"+4y’一5y=(3x—1)e
x
的通解为 [*],其中C
1
,C
2
为任意常数. 则 [*] 由y(0)=0,y’(0)=1,得 [*] 解得C
1
=一[*],C
2
=[*],故所求特解为 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/bT84777K
0
考研数学二
相关试题推荐
设A为n阶矩阵,k为常数,则(kA)*等于().
设A为三阶实对称矩阵,且存在正交矩阵Q=,又令B=A2+2E,求矩阵B.
过曲线上的一点A作切线,使该切线与曲线及x轴所围成的平面区域的面积为3/4,所围区域绕x轴旋转一周而成的体积为___。
设f(x)在[1,+∞]上连续可导,若曲线y=f(x),直线x=l,x=t(t>1)与x轴围成的平面区域绕x轴旋转一周所得的旋转体的体积为,且f(2)=2/9,求函数y=f(x)的表达式。
设函数f(x)是连续且单调增加的奇函数,φ(x)=(2μ-x)f(x-μ)dμ,则φ(x)是().
设曲线y=y(x)(x>0)是微分方程2y"+y’-y=(4-6x)e-x的一个特解,此曲线经过原点且在原点处的切线平行于x轴。计算积分23.
考虑二元函数f(x,y)在点(x0,y0)处的下面四条性质:①连续②可微③存在④连续若用“P→Q”表示可由性质P推出性质Q,则有()。
求一个以y1=tet,y2=sin2t为其两个特解的四阶常系数齐次线性微分方程,并求其通解.
设a>0,f(χ)在(-∞,+∞)上有连续导数,求极限∫-aaf(t+a)-f(t-a)]dt.
已知二次型f(χ1,χ2,χ3)=χ12-2χ22+bχ32-4χ1χ2+4χ1χ3+2aχ2χ3(a>0)经正交变换化成了标准形f=2y12+2y22-7y32,求a=_______、b=_______的值和正交矩阵P=_______.
随机试题
下颌第二磨牙形态特点中哪个不正确
动脉导管未闭,不应出现下述哪项体征
下列不引起病毒血症的病毒是
我国将吗啡列为严格管制药品,原因是其长期使用可能产生()。
保留灌肠的溶液量不宜超过
工程质量的验收均应在()自行检查评定的基础上进行。
税务行政复议机关收到纳税人提出的复议申请后,在决定是否受理税务行政复议申请时应当审查()。(2012年)
电子银行业务的业务种类有()。
下列合法的VisualBasic变量名是()。
根据域名代码规定,GOV代表()。
最新回复
(
0
)