首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求f(x,y)=x+xy—x2一y2在闭区域D={(x,y)|0≤x≤1,0≤y≤2}上的最大值和最小值.
求f(x,y)=x+xy—x2一y2在闭区域D={(x,y)|0≤x≤1,0≤y≤2}上的最大值和最小值.
admin
2018-09-20
77
问题
求f(x,y)=x+xy—x
2
一y
2
在闭区域D={(x,y)|0≤x≤1,0≤y≤2}上的最大值和最小值.
选项
答案
这是闭区域上求最值的问题.由于函数f(x,y)=x+xy一x
2
-y
2
在闭区域D上连续,所以一定存在最大值和最小值. 首先求f(x,y)=x+xy一x
2
一y
2
在闭区域D内部的极值: 解方程组[*]得区域D内部唯一的驻点为[*]由 g(x,y)=(f
xy
")
2
一f
xx
"f
yy
"=一3,f
xx
"=一2,得f(x,y)=x+xy—x
2
一y
2
在闭区域D内部的极大值[*] 再求f(x,y)在闭区域D边界上的最大值与最小值: 这是条件极值问题,边界直线方程即为约束条件. 在z轴上约束条件为y=0(0≤x≤1),于是拉格朗日函数为 F(x,y,λ)=x+xy一x
2
一y
2
+λy, [*] 在下边界的端点(0,0),(1,0)处f(0,0)=0,f(1,0)=0,所以下边界的最大值为[*]最小值为0. 同理可求出: 在上边界上的最大值为一2,最小值为一4; 在左边界上的最大值为0,最小值为一4; 在右边界上的最大值为[*],最小值为一2. 比较以上各值,可知函数f(x,y)=x+xy一x
2
一y在
2
闭区域D上的最大值为[*]最小值为一4.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/bRW4777K
0
考研数学三
相关试题推荐
求曲线的渐近线.
设f(x)=(I)求f’(x);(Ⅱ)证明:x=0是f(x)的极大值点;(Ⅲ)令,考察f’(xn)是正的还是负的,n为非零整数;(Ⅳ)证明:对,f(x)在(-δ,0]上不单调上升,在[0,δ]上不单调下降.
已知f(x)=ax3+x2+2在x=0和x=-1处取得极值,求f(x)的单调区间、极值点和拐点.
计算下列各题:(Ⅰ)由方程xy=yx确定x=x(y),求.(Ⅱ)方程y-xey=1确定y=y(x),求y’’.(Ⅲ)设2x-tan(x-y)=
设A是3阶矩阵,且有3个互相正交的特征向量,证明A是对称矩阵.
已知矩阵A=有特征值λ=5,求a的值;并当a>0时.求正交矩阵Q,使Q-1AQ=A.
设函数f(x)在[a,b]上连续,在(a,b)内可导,且.求证:在(a,b)内至少存在一点ξ,使f’(ξ)=0.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2…+(n一1)αn一1=0,b=α1+α2+…+αn.求方程组AX=b的通解.
设α1=(1)a,b为何值时,β不能表示为α1,α2,α3,α4的线性组合?(2)a,b为何值时,β可唯一表示为α1,α2,α3,α4的线性组合?
已知求A的特征值、特征向量,并判断A能否相似对角化,说明理由.
随机试题
下列各项,关于高血压病的叙述,错误的是
财政部门有权对会计书师事务所所出具的审计报告的程序和内容进行监督。()
企业有下列()情形之一的,海关实施C类管理。
我国注册税务师考试制度从( )年开始实行的。
大额可转让定期存单(CDs)是银行发行的有固定面额、可转让流通的存款凭证。下列关于其说法错误的有()。
A、 B、 C、 D、 A此题答案为A。从数字构成的角度分析,除了第二项是整数其余均是分数,因此有必要把1改写为分式形式。各项依次是分子是公差为3的等差数列,分母是公比为2的等比数列。选A。
气候变暖已经成为全人类共同面临的大问题。科学家和环境保护组织不断发出警告:如果我们不立刻行动起来保护环境,阻止气候变暖,那么人类总有一天会毁灭地球,不能继续生存下去。由此可以推出()。
制宪机关和宪法的起草机关的区别有哪些()
在数据库技术中,实体集之间的联系可以是一对一或一对多的,那么“学生”和“可选课程”的联系为______。
Becauseconflictanddisagreementsarepartofallcloserelationships,couplesneedtolearnstrategiesformanagingconflicti
最新回复
(
0
)