首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为,2阶矩阵,证明:r(A)=1的充分必要条件是存在n维非零列向量α,β,使得A=αβT.
设A为,2阶矩阵,证明:r(A)=1的充分必要条件是存在n维非零列向量α,β,使得A=αβT.
admin
2016-10-24
62
问题
设A为,2阶矩阵,证明:r(A)=1的充分必要条件是存在n维非零列向量α,β,使得A=αβ
T
.
选项
答案
设r(A)=1,则A为非零矩阵且A的每行元素都成比例, [*] 故A=αβ
T
,显然α,β为非零向量,设Aαβ
T
,其中α,β为非零向量,则A为非零矩阵,于是r(A)≥1,又r(A)=r(αβ
T
)≤r(α)=1,故r(A)=1.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/b7T4777K
0
考研数学三
相关试题推荐
求下列向量组的一个极大线性无关组,并把其余向量用极大线性无关组线性表示:α1=(1,2,1,3),α2=(4,-1,-5,-6),α3=(-1,-3,-4,-7),α4=(2,1,2,3);
N件产品中有N1件次品,从中任取n件(不放回),其中1≤n≤N.(1)求其中恰有k件(k≤n且k≤N1)次品的概率;(2)求其中有次品的概率;(3)如果N1≥2,n≥2,求其中至少有两件次品的概率.
已知向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5.如果各向量组的秩分别为r(Ⅰ)=r(Ⅱ)=3,r(Ⅲ)=4,证明:向量组α1,α2,α3,α5-α4的秩为4.
若α1,α2,…,αs的秩为r,则下列结论正确的是().
若幂级数在x=-1处收敛,则此级数在x=2处().
利用已知函数的幂级数展开式,求下列幂级数的和函数,并指出其收敛区间:
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=0和(Ⅱ)ATAx=0必有().
设3阶矩阵A的特征值为2,3,λ.若行列式|2A|=-48,则λ=________.
设u=f(x,y,z)有连续的一阶偏导数,又函数y=y(x)及z=z(x)分别由下列两式确定:求du/dx.
f(x)g(x)在x0处可导,则下列说法正确的是().
随机试题
现阶段我国各族人民的共同理想是()。
胆固醇合成的关键酶是
A.IgAB.IgDC.IgED.IgGE.IgM感染过程中首先出现,常为近期感染标志的抗体是
甲状腺术前指导病人练习的体位是()
路面结构中的基层材料必须具有()。
下列我们日常生产生活所需的产品中,不属于发酵工程产品的是()。
三岁幼儿一般能集中注意的时间约为()。
给定材料材料1相对于“远在天边”的老虎,群众对“近在眼前”嗡嗡乱飞的“蝇贪”感受更真切。农村“微腐败”损害的是老百姓的切身利益,啃食的是群众获得感,挥霍的是基层群众对党的信任。从各地查处的腐败案件来看,农村“微腐败”已成为基层
在关系模型中,一个关系对应即是我们通常所说的()。
A—AudiB—BMWC—BuickD—ChryslerE—Chevrolet
最新回复
(
0
)