首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶非零矩阵,且满足aij=Aij(i,j=1,2,3),其中Aij为aij的代数余子式,则下列结论:①A是可逆矩阵;②A是对称矩阵;③A是不可逆矩阵;④A是正交矩阵.其中正确的个数为 ( )
设A为3阶非零矩阵,且满足aij=Aij(i,j=1,2,3),其中Aij为aij的代数余子式,则下列结论:①A是可逆矩阵;②A是对称矩阵;③A是不可逆矩阵;④A是正交矩阵.其中正确的个数为 ( )
admin
2019-01-14
47
问题
设A为3阶非零矩阵,且满足a
ij
=A
ij
(i,j=1,2,3),其中A
ij
为a
ij
的代数余子式,则下列结论:①A是可逆矩阵;②A是对称矩阵;③A是不可逆矩阵;④A是正交矩阵.其中正确的个数为 ( )
选项
A、1
B、2
C、3
D、4
答案
B
解析
由a
ij
=A
ij
(i,j=1,2,3)及伴随矩阵的定义可知:A
*
=A
T
,那么|A
*
|=|A
T
|,也即|A|
2
=|A|,即|A|(|A|一1)=0.又由于A为非零矩阵,不妨设a
11
≠0,则|A|=a
11
A
11
+a
12
A
12
+a
13
A
13
=a
11
2
+a
12
2
+a
13
2
>0,故|A|=1.因此,A可逆.并且AA
T
=AA
*
=|A|E=E,可知A是正交矩阵.可知①、④正确,③错误.从题目中的条件无法判断A是否为对称矩阵,故正确的只有两个,选B.
转载请注明原文地址:https://www.kaotiyun.com/show/ajM4777K
0
考研数学一
相关试题推荐
已知向量组α1,α2,α3,α4线性无关,则向量组2α1+α3+α4,α2-α4,α3+α4,α2+α3,2α1+α2+α3的秩是().
设函数y=f(x)在[a,b](a>0)连续,由曲线y=f(x),直线x=a,x=b及x轴围成的平面图形(如图3.12)绕y轴旋转一周得旋转体,试导出该旋转体的体积公式.
设总体X服从正态分布N(μ,σ2),其中σ2为已知,则当样本容量n一定时,总体均值μ的置信区间长度l增大,其置信度1一α的值
设质点P沿以为直径的下半圆周,从点A(1,2)运动到B(3,4)的过程中,受变力F的作用,F的大小等于点P到原点0之距离,方向垂直于线段,与y轴正向的夹角小于,求变力F对质点P做的功.
设(an—an—1)收敛,又bn是收敛的正项级数,求证:anbn绝对收敛.
以下命题正确的是().
设y=f(x)为区间[0,1]上的非负连续函数.证明存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以u=f(x)为曲边的曲边梯形的面积;
已知n维向量组(i)α1,α2,…,αs和(ii)β1,β2,…,βt的秩都为r,则下列命题中不正确的是().
设F(x)=∫xx+2πesintsintdt,则F(x)()
设F(x)=∫xx+2πesintsintdt,则F(x)()
随机试题
简述出口付汇核销的程序。
神经纤维传导兴奋有什么特征?
巨幼红细胞贫血的发病机制为
有关对施工项目安全管理的叙述中,说法不正确的是()。
财政部门于2009年4月派出检查组对甲公司的会计工作进行检查,检查中了解到以下情况:1.2009年2月,甲公司购买5台计算机,会计人员刘某在审核其发票时,发现发票金额栏中的数字有更改现象,经查阅相关买卖合同单据,确认更改后的金额数字是正确的,于是
商品流通企业在进行决策时,要对未来发展进行判断和安排。这是商品流通企业经营决策的()原则的要求。
下列事项中,体现实质重于形式会计信息质量要求的是()。
材料一:全球化时代的国家财富的增长与国家海权而非陆权的扩张是同步上升的。这是因为,海洋是地球的“血脉”,因而也是将国家力量投送到世界各地并将世界财富送返资本母国的最快捷的载体。于是,控制大海就成了控制世界财富的关键。
关于分组次数分布表的正确评价是()
下列关于VLAN标识的描述中,错误的是()。
最新回复
(
0
)