首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…ηn—r+1是它的n一r+1个线性无关的解。试证它的任一解可表示为x=k1η1+…+kn—r+1ηn—r+1,其中k1+…+kn—r+1=1。
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…ηn—r+1是它的n一r+1个线性无关的解。试证它的任一解可表示为x=k1η1+…+kn—r+1ηn—r+1,其中k1+…+kn—r+1=1。
admin
2019-02-23
65
问题
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η
1
,…η
n—r+1
是它的n一r+1个线性无关的解。试证它的任一解可表示为x=k
1
η
1
+…+k
n—r+1
η
n—r+1
,其中k
1
+…+k
n—r+1
=1。
选项
答案
设x为Ax=b的任一解,由题设知η
1
,η
2
,…,η
n—r+1
线性无关且均为Ax=b的解。 取ξ
1
=η
1
一η
2
,ξ
2
=η
2
一η
1
,…,ξ
n—r
=η
n—r+1
一η
1
,根据线性方程组解的结构,它们均为对应齐次方程组Ax=0的解。 下面用反证法证明。 设ξ
1
,ξ
2
,…,ξ
n—r
线性相关,则存在不全为零的数l
1
,l
2
,…,l
n—r
,使得 l
1
ξ
1
+l
2
ξ
2
+…+l
n—r
ξ
n—r
=0, 即 l
1
(η
2
一η
1
)+l
2
(η
3
一η
2
)+…+l
n—r
(η
n—r+1
一η
1
)=0, 即 一(l
1
+l
2
+…+l
n—r
)η
1
+l
1
η
2
+l
2
η
3
+…+l
n—r
η
n—r+1
=0。 由η
1
,η
2
,…,η
n—r+1
线性无关知 一(l
1
+l
2
+…+l
n—r
)=l
1
=l
2
=…=l
n—r
=0, 这与l
1
,l
2
,…,l
n—r
不全为零矛盾,故假设不成立。因此ξ
1
,ξ
2
,…,ξ
n—r
线性无关,是Ax=0的基础解系。 由于x,η
1
均为Ax=b的解,所以x一η
1
为Ax=0的解,因此x一η
1
可由ξ
1
,ξ
2
,…,ξ
n—r
线性表示,设 x一η
1
=k
2
ξ
1
+k
3
ξ
2
+…+k
n—r+1
ξ
n—r
=k
2
(η
2
一η
1
)+k
3
(η
3
一η
1
)+…+k
n—r+1
(η
n—r+1
一η
1
), 则 x=η
1
(1一k
2
一k
3
一…一k
n—r+1
)+k
2
η
2
+k
3
η
3
+…+k
n—r+1
η
n—r+1
, 令k
1
=1一k
2
一k
3
一…一k
n—t+1
,则k
1
+k
2
+k
3
+…+k
n—r+1
=1,从而x=k
1
η
1
+k
2
η
2
+…+k
n—r+1
η
n—r+1
恒成立。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/aij4777K
0
考研数学二
相关试题推荐
设由方程xef(y)=ey确定y为x的函数,其中f(x)二阶可导,且f’≠1,则=______
设u=f(x+y,x2+y2),其中f二阶连续可偏导,求
设f(x)=sinx,f[φ(x)]=1-x2,则φ(x)=_____,定义域为______
设A,B为n阶矩阵,且A2=A,B2=B,(A+B)2=A+B.证明:AB=O.
设f(χ)在[0,b]可导,f′(χ)>0(χ∈(0,b)),t∈[0,b],问t取何值时,图4.10中阴影部分的面积最大?最小?
设A=,B=(A+kE)2.(1)求作对角矩阵D,使得B~D.(2)实数k满足什么条件时B正定?
设①计算行列式|A|.②实数a为什么值时方程组AX=β有无穷多解?在此时求通解.
在一次拍卖中,两人竞买一幅名画,拍卖以暗标形式进行,并以最高价成交.设两人的出价相互独立且均服从[1,2]上的均匀分布,求这幅画的期望成交价.
随机试题
A、Commuters’performancebenefitedmuchfromthem.B、Nairobihadtakenmeasurestosolvethisproblem.C、Theycouldaffectpupil
下列关于中国证监会的说法错误的是()
除了封土坟头外,帝王陵园的地面建筑主要部分包括()。
f(2x)
关于工程造价咨询服务,下列说法错误的是()。
某房地产开发公司拟开发建设一住宅小区,已知该项目的固定成本为3000万元,住宅平均售价为4000元/平方米,单位产品的可变成本为2500元/平方米。该公司在完成小区建设后,预计可获利300万元。该公司需开发的保本开发面积为()平方米。
在只生产—种产品的工业企业中,直接生产成本和间接生产成本都可以直接计入该种产品成本。()
一位历史学家说:“20世纪有两位伟大的改革家,一位在一定程度上挽救了现代资本主义国家,一位在一定程度上挽救了现代社会主义国家。”这两位改革家是()。
设矩阵A=(aij)3×3满足A*=AT,其中A*为A的伴随矩阵,AT为A的转置矩阵.若a11,a12,a13为三个相等的正数,则a11为().
Therearemorerichpeoplethaneverbefore,includingsome7millionmillionaires,andover400billionaires.Fromsippingcham
最新回复
(
0
)