首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,冥中α1,α2线性无关,若α1+2α2一α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为( )
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,冥中α1,α2线性无关,若α1+2α2一α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为( )
admin
2018-05-17
83
问题
已知四阶方阵A=(α
1
,α
2
,α
3
,α
4
),α
1
,α
2
,α
3
,α
4
均为四维列向量,冥中α
1
,α
2
线性无关,若α
1
+2α
2
一α
3
=β,α
1
+α
2
+α
3
+α
4
=β,2α
1
+3α
2
+α
3
+2α
4
=β,k
1
,k
2
为任意常数,那么Ax=β的通解为( )
选项
A、
B、
C、
D、
答案
B
解析
由α
1
+2α
2
一α
3
=β知
即,γ
1
=(1,2,一1,0)
T
是Ax=β的解。同理γ
2
=(1,1,1,1)
T
,γ
3
=(2,3,1,2)
T
均是Ax=β的解,则η
1
=γ
1
一γ
2
=(0,1,一2,一1)
T
,η
2
=γ
3
一γ
2
=(1,2,0,1)
T
是导出组Ax=0的解,并且它们线性无关。于是Ax=0至少有两个线性无关的解向量,则n一r(A)≥2,即r(A)≤2,又因为α
1
,α
2
线性无关,故r(A)=r(α
1
,α
2
,α
3
,α
4
)≥2。所以必有r(A)=2,从而n一r(A)=2,因此η
1
,η
2
就是Ax=0的基础解系。所以应选B。
转载请注明原文地址:https://www.kaotiyun.com/show/agk4777K
0
考研数学二
相关试题推荐
设常数k>0,函数f(x)=lnx-(x/e)+k在(0,+∞)内零点的个数为().
已知λ1=6,λ2=λ3=3是实对称矩阵A的三个特征值.且对应于λ2=λ3=3的特征向量为a2=(-1,0,1)T,a3=(1,-2,1)T,求A对应于λ1=6的特征向量及矩阵A.
设A为n阶方阵,A*为A的伴随矩阵,且A11≠0,证明:方程组Ax=b(b≠0)有无穷多解的充要条件中b为A*x=0的解.
设,则有
设二二次型f(x1,x2,x3):XTAX=ax12+2x22+(-232)+2bx1x3(b>0),其中二:次矩阵A的特征值之和为1,特征值之积为-12.(Ⅰ)求a,b的值;(Ⅱ)利用正交变换将二次型f化为标准形,并写出
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(E为n阶单位矩阵).
(2005年试题,二)设区域D={(x,y)|x2+y2≤4,x>0,y≥0}f(x)为D上的正值连续函数,a,b为常数,则
设当x→0时,按照前面一个比后面一个为高阶无穷小的次序排列为()
改变积分次序
变换二次积分的积分次序:
随机试题
患者,男,50岁。昨日在全麻下行右半结肠切除术,全天胃肠减压量800ml,尿量2000ml,今晨电解质正常。今日输液的最佳方案应是
患者女,22岁。因乏力、面色苍白半个月前来就诊。曾在基层医院诊断为贫血并进行治疗。发病以来无发热、关节痛、脱发等,进食和睡眠稍差,大便正常。查体:T36.2℃,P96次/分,R16次/分,BP110/70mmHg,贫血貌,无皮疹和出血点,全身浅表淋巴
金属砷失活乳牙牙髓,封药时间为
公路桥涵通常不宜采用的细集料是()。
根据建设工程职业健康安全与环境管理的特点,()决定了职业健康安全与环境管理的复杂性。
潜艇用潜望式望远镜
导游服务具有社会性这一属性,是因为()。
根据下列材料回答问题。若保持同比增长率不变,预计哪一年4月入境旅游的法国游客人数将会超过英国?()
“商品”与“顾客”两个实体集之间的联系一般是
有以下程序 #include<iostream> using namespace std; class MyClass { public: MyClass(intn) {number=n;} //拷贝构造
最新回复
(
0
)