首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设为A的特征向量. (I)求a,b及A的所有特征值与特征向量. (Ⅱ)A可否对角化?若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.
设为A的特征向量. (I)求a,b及A的所有特征值与特征向量. (Ⅱ)A可否对角化?若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.
admin
2017-12-31
56
问题
设
为A的特征向量.
(I)求a,b及A的所有特征值与特征向量.
(Ⅱ)A可否对角化?若可对角化,求可逆矩阵P,使得P
-1
AP为对角矩阵.
选项
答案
(Ⅰ)由Aα=λα得[*],即 [*]解得a=1,b=1,λ=3. 由|λE-A|=[*]=λ(λ-2)(λ-3)=0得λ
1
=0,λ
2
=2,λ
3
=3. (Ⅱ)因为A的特征值都是单值,所以A可相似对角化. 将λ
1
=0代入(λE-A)X=0得λ
1
=0对应的线性无关特征向量为α
1
=[*] 将λ
2
=2代入(λE-A)X=0得λ
2
=2对应的线性无关特征向量为α
2
=[*] 将λ
3
=3代入(λE-A)X=0得λ
3
=3对应的线性无关特征向量为α
3
=[*] [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/aXX4777K
0
考研数学三
相关试题推荐
设f(x,y)具有二阶连续偏导数.证明:由方程f(x,y)=0所确定的隐函数y=φ(x)在x=a处取得极值b=φ(A)的必要条件是f(a,b)=0,f’x(a,b)=0,f’y(a,b)≠0.且当r(a,b)>0时,b=φ(A)是极大值;当r(a,
求微分方程(3x2+2xy—y2)dx+(x2一2xy)dy=0的通解.
设四元齐次线性方程组(Ⅰ)为又已知某齐次线性方程组(Ⅱ)的通解为k1[0,1,1,0]T+k2[一1,2,2,1]T.问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
已知非齐次线性方程组A3×4X=b①有通解k1[1,2,0,一2]T+k2[4,一1,一1,一1]T+[1,0,一1,1]T,则满足方程组①且满足条件x1=x2,x3=x4的解是________.
设矩阵,且A3=O. (Ⅰ)求a的值; (Ⅱ)若矩阵X满足X一XA2一AX+AXA2=E,其中E为3阶单位矩阵,求X.
设n阶矩阵A非奇异(行≥2),A*是矩阵A的伴随矩阵,则【】
设矩阵A=,3维列向量α=(α,1,1)T,已知Aα与α线性相关,则α=_______
设A,B,C是三个两两相互独立的事件,且P(ABC)=0,0<P(C)<1,则一定有().
随机试题
特别行政区立法会,依法行使特别行政区的立法权。为了保证立法会议员依法行使权力,《基本法》规定立法会议员在任职期间享有下列权利,主要有:_________;_________;_________。
属于非数字化影像的是
建筑节能工程为单位建筑工程中的一个分部工程,其分项工程包括()。
设置在汇接局(Tm)和端局(C5)的时钟是()。
合规管理部门制定的合规管理计划的内容不包括()。
承包人在进行柱基础填埋前48小时电话通知工程师准备验收,临近验收时,工程师因有事无法参加验收,便派人通知承包人延期验收。第4天,承包人为了不影响施工进度,自行对柱基础进行了验收,并作了记录。此后承包人开始继续施工,并向发包人提出工程延期2天、承担停工费用损
从国际经验来看,政府问财政收支结构划分呈现的基本特征是()。
按照通货膨胀的程度,可将其分为()。
胡锦涛指出在新形势下,中英双方应该从21世纪全球视角和战略高度规划好两国关系,重点要做好()。
分拆上市
最新回复
(
0
)