首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维列向量α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,向量β2不可由α1,α2,α3线性表示,则对任意常数k,必有( ).
设n维列向量α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,向量β2不可由α1,α2,α3线性表示,则对任意常数k,必有( ).
admin
2019-08-26
77
问题
设n维列向量α
1
,α
2
,α
3
线性无关,向量β
1
可由α
1
,α
2
,α
3
线性表示,向量β
2
不可由α
1
,α
2
,α
3
线性表示,则对任意常数k,必有( ).
选项
A、 α
1
,α
2
,α
3
,kβ
1
+β
2
线性无关
B、 α
1
,α
2
,α
3
,kβ
1
+β
2
线性相关
C、 α
1
,α
2
,α
3
,β
1
+kβ
2
线性无关
D、 α
1
,α
2
,α
3
,β
1
+kβ
2
线性相关
答案
A
解析
【思路探索】对于抽象的向量组可以用定义法,也可以用排除法.
解:设有一组数字λ
1
,λ
2
,λ
3
,λ
4
,满足λ
1
ɑ
1
+λ
2
ɑ
2
+λ
3
ɑ
3
+λ
4
(kβ
1
+β
2
)=0,
若λ
4
=0,则有条件λ
1
=λ
2
=λ
3
=0,从而推出ɑ
1
,ɑ
2
,ɑ
3
,kβ
1
+β
2
线性无关.
若λ
4
≠0,则kβ
1
+β
2
可由ɑ
1
,ɑ
2
,ɑ
3
线性表示,而β
1
可由ɑ
1
,ɑ
2
,ɑ
3
线性表示,故β
2
也可由ɑ
1
,ɑ
2
,ɑ
3
线性表示,矛盾,所以,λ
4
=0,从而(A)正确.对于其余三个选项,也可用排除法.
当k=0时,可排除(B)、(C);当k=1时,可排除(D).
故应选(A).
转载请注明原文地址:https://www.kaotiyun.com/show/aSJ4777K
0
考研数学三
相关试题推荐
设向量组α,β,γ线性无关,α,β,δ线性相关,则
在全概率公式P(B)=P(Ai)P(B|Ai)中,除了要求条件B是任意随机事件及P(Ai)>0(i=1,2,…,n)之外,我们可以将其他条件改为
已知方程组总有解,则λ应满足___________.
已知随机变是X的概率分布为P{X=1}=0.2,P{X=2}=0.3,P{X=3}=0.5.试写出其分布函数F(χ).
(2004年)设级数的和函数为S(x),求:Ⅰ)S(x)所满足的一阶微分方程;Ⅱ)S(x)的表达式.
(2001年)某公司每年的工资总额在比上一年增加20%的基础上再追加2百万元.若以Wt表示第t年的工资总额(单位:百万元),则Wt满足的差分方程是______.
(2013年)设函数f(x)在[0,+∞)上可导,f(0)=0,且.证明:Ⅰ)存在a>0,使得f(A)=1;Ⅱ)对(Ⅰ)中的a,存在ξ∈(0,a),使得.
(2008年)如图,曲线段的方程为y=f(x),函数f(x)在区间[0,a]上有连续的导数,则定积分∫0axf’(x)dx等于()
设幂级数的收敛区间为______.
已知二次型f(x1,x2,x3)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2的秩为2.求方程f(x1,x2,x3)=0的解.
随机试题
下列词语中没有错别字的一组是()
某国有工业公司地处市区,2003年度有关占用土地情况如下:(1)公司办的学校、幼儿园和医院占地面积2000平方米。(2)厂区内的绿化用地600平方米,厂区外的公共绿化用地5000平方米。(3)本年4月1日,将一块2000平方米的土地出租给某企业使用。
党的纪律检查委员会要改变下级纪律检查委员会已经经同级党委批准的决定,须经过它的上一级党委批准。()
行政复议撤销决定的适用情形有()。
A、 B、 C、 D、 A第一组图形中,阴影依次逆时针旋转90°,第二组图形中,阴影依次逆时针旋转120°。
A.条件(1)充分,但条件(2)不充分。B.条件(2)充分,但条件(1)不充分。C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分。D.条件(1)充分,条件(2)也充分。E.条件(1)和(2)单独都不充分,条件(1)和条件(2
Soft-drinksaleshavebeendecliningforninestraightyears.Thisismuchmorethanatrend—it’safundamentalshiftinconsum
IP地址采用分段地址方式,长度为_______个字节。
下列选项中不属于结构化程序设计原则的是
Asmywifegreetedmeoneevening,hervoicecamethroughthedoor,"Guesswhat?"Ialwaystakeadeep【C1】______onthisvery
最新回复
(
0
)