首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2008年)设f(x)是周期为2的连续函数. (Ⅰ)证明对任意的实数t,有∫tt+2f(x)dx=∫02f(x)dx; (Ⅱ)证明G(x)=∫0x[2f(t)一∫tt+2f(s)ds]dt是周期为2的周期函数.
(2008年)设f(x)是周期为2的连续函数. (Ⅰ)证明对任意的实数t,有∫tt+2f(x)dx=∫02f(x)dx; (Ⅱ)证明G(x)=∫0x[2f(t)一∫tt+2f(s)ds]dt是周期为2的周期函数.
admin
2021-01-25
82
问题
(2008年)设f(x)是周期为2的连续函数.
(Ⅰ)证明对任意的实数t,有∫
t
t+2
f(x)dx=∫
0
2
f(x)dx;
(Ⅱ)证明G(x)=∫
0
x
[2f(t)一∫
t
t+2
f(s)ds]dt是周期为2的周期函数.
选项
答案
(Ⅰ)由积分的性质知,对任意的实数t, ∫
t
t+2
f(x)dx=∫
t
0
f(x)dx+∫
0
2
f(x)dx+∫
2
t+2
f(x)dx. 令s=x一2,则有 ∫
2
t+2
f(x)dx=∫
0
t
f(s+2)ds=∫
0
t
f(s)ds=一∫
t
0
f(x)dx 所以 ∫
t
t+2
f(x)dx=∫
t
0
f(x)dx+∫
0
2
f(x)dx-∫
t
0
f(x)dx=∫
0
2
f(x)dx (Ⅱ)由于∫
t
t+2
f(s)ds—∫
0
2
f(s)ds 记 ∫
0
2
f(s)ds=a 则 G(x)=2∫
0
x
f(t)dt—ax 因为对任意的x, G(x+2)一G(x)=2∫
0
x+2
f(t)dt—a(x+2)一2∫
0
x
f(t)dt+ax =2∫
x
x+2
f(t)dt一2a=2∫
0
2
f(t)dt一2a=0,所以,G(x)是周期为2的周期函数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/aMx4777K
0
考研数学三
相关试题推荐
函数f(x,y,z)=-2x2在条件x2-y2-2z2=2下的极大值是_________.
设总体X的概率密度为f(x;θ)=其中θ>0为未知参数,又设x1,x2,…,xn是X的一组样本值,则参数θ的最大似然估计值为______.
设=∫-∞atetdt,则a=________.
f(x1,x2,x3,x4)=XTAX的正惯性指数是2,且A2-2A=0,该二次型的规范形为______.
设离散型随机变量X的分布函数F(x)=则随机变量|X|的分布函数为________.
(7)设随机变量X的分布函数为F(x)=0.2F1(z)+0.8F1(2x),其中F。1(y)是服从参数为1的指数分布的随机变量的分布函数,则D(X)为().
[2013年]设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记若α,β正交且均为单位向量,证明厂在正交变换下的标准形为2y12+y22.
(2005年)设X1,X2,…,Xn(n>2)为来自总体N(0,σ2)的简单随机样本,为样本均值,记Yi=Xi-,i=1,2,…,n。(Ⅰ)求Yi的方差D(Yi),i=1,2,…,n;(Ⅱ)求Y1与Yn的协方差Cov(Y1,Yn);(Ⅲ)若c(Y1+
(2016年)设某商品的最大需求量为1200件,该商品的需求函数为Q=Q(p),需求弹性,p为单价(万元)。(I)求需求函数的表达式;(Ⅱ)求p=100万元时的边际收益,并说明其经济意义。
[2016年]设随机变量X与Y相互独立,且X~N(1,2),Y~N(1,4),则D(XY)=().
随机试题
存现句的句首出现介词时就变成了非主谓句。
在Excel2010工作表中,把数值小于90的单元格内容用斜体表示,需使用______________。
恶性葡萄胎与良性葡萄胎的主要不同点在于
参与酮体氧化的酶是
下列诊断颅底骨折的依据中最确切的是
有关开放性气胸首先应进行的处理应该是
A.乳剂分层、混悬剂结晶生长、片剂溶出速度改变B.药物水解、结晶生长、颗粒结块C.药物氧化、颗粒结块、溶出速度改变D.药物降解、乳液分层、片剂崩解度改变E.药物水解、药物氧化、药物异构化三种现象均属于药物制剂化学稳定性变化的是()。
药品使用机构中采取规定条件、规范行为的管理模式的是
甲公司是一家制造业企业,为做好财务计划,甲公司管理层拟采用管理用财务报表进行分析,相关资料如下:(1)甲公司2014年的主要财务报表数据。(2)甲公司没有优先股,股东权益变动均来自利润留存,经营活动所需的货币资金是当年销售收入的2%,投资收益均来自长
城镇土地使用税以纳税人实际占用的土地面积为计税依据,下列各项中,关于实际占用的土地面积规定正确的有()。
最新回复
(
0
)