首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A,B都是n阶矩阵,并且B和E+AB都可逆,证明: B(E+AB)-1B-1=E—B(E+AB)-1A.
A,B都是n阶矩阵,并且B和E+AB都可逆,证明: B(E+AB)-1B-1=E—B(E+AB)-1A.
admin
2018-11-20
70
问题
A,B都是n阶矩阵,并且B和E+AB都可逆,证明:
B(E+AB)
-1
B
-1
=E—B(E+AB)
-1
A.
选项
答案
对此等式进行恒等变形: B(E+AB)
-1
B
-1
=E一B(E+AB)
-1
A[*]B(E+AB)
-1
=B—B(E+AB)
-1
AB (用B右乘等式两边) [*]B(E+AB)
-1
+B(E+AB)
-1
AB=B [*]B(E+AB)
-1
(E+AB)=B. 最后的等式显然成立.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/a5W4777K
0
考研数学三
相关试题推荐
设函数f(x)在[0,+∞)内可导,f(0)=1,且f’(x)+f(x)一证明:当x≥0时,e一x≤f(x)≤1.
设f(x)是连续函数.若|f(x)|≤k,证明:当x≥0时,有|y(x)|≤(eax一1).
设f(x)是连续函数.求初值问题的解,其中a>0;
设求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵,
计算D=
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=一ξ1+2ξ2+2ξ3,Aξ2=2ξ1一ξ2一2ξ3,Aξ3=2ξ1一2ξ2一ξ3.求|A*+2E|.
设矩阵求可逆矩阵P,使得PTA2P为对角矩阵.
设方程组AX=β有解但不唯一,(1)求a;(2)求可逆矩阵P,使得P一1AP为对角阵;(3)求正交阵Q,使得QTAQ为对角阵.
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f(1)=0,f(2)=.证明:存在ξ∈(0,2),使得f"(ξ)=2.
设A为n阶非奇异矩阵,α是n维列向量,b为常数,证明PQ可逆的充分必要条件是αTA一1α≠b.
随机试题
产品认证的基础是产品_______或确定的_______。
慢性肾炎可发生于任何年龄,但以_______为主,男性多见。
企业所得税的申报缴纳制度中,税务机关在追缴该纳税人应纳税款时,应当将_________、__________、__________、_________告知纳税人。
全段围堰法导流一般适用于()的河流。
下列哪项假设能有效地控制盈亏平衡分析的可靠性
王某花20万元在某汽车4S店购买了一辆小汽车。3个月后,王某到4S店保养汽车时,员工告诉他:“你的车发生过事故,车门已整过。”王某心想,自己开车至今未发生过事故,因而怀疑自己所购车辆并非新车。后经证实,该4S店卖给王某的是一辆退货车。根据我国《消费者权
五四时期新闻学发轫的具体体现。
A、 B、 C、 D、 D
由于软硬件故障可能造成数据库中数据被破坏,数据库恢复就是(14)。可用多种方法实现数据库恢复,如定期将数据库作备份;在进行事务处理时,对数据更新(插入、删除、修改)的全部有关内容写入(15)。(2008年5月试题14~15)(14)
有两个关系R和T如下图所示:则由关系R得到关系T的运算是
最新回复
(
0
)