首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设实二次型f(x1,x2,x3)=xTAx的秩为2,且α1=(1,0,0)T是(A-2E)x=0的解,α2=(0,-1,1)T是(A-6E)x=0的解. 求方程组f(x1,x2,x3)=0的解.
设实二次型f(x1,x2,x3)=xTAx的秩为2,且α1=(1,0,0)T是(A-2E)x=0的解,α2=(0,-1,1)T是(A-6E)x=0的解. 求方程组f(x1,x2,x3)=0的解.
admin
2021-02-25
83
问题
设实二次型f(x
1
,x
2
,x
3
)=x
T
Ax的秩为2,且α
1
=(1,0,0)
T
是(A-2E)x=0的解,α
2
=(0,-1,1)
T
是(A-6E)x=0的解.
求方程组f(x
1
,x
2
,x
3
)=0的解.
选项
答案
由于f(x
1
,x
2
,x
3
)=2x
2
1
+3(x
2
-x
3
)
2
=0,得[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Zl84777K
0
考研数学二
相关试题推荐
设f(x)为[a,b]上的函数且满足则称f(x)为[a,b]上的凹函数,证明:(1)若f(x)在[a,b]上二阶可微,且f"(x)>0,则f(x)为[a,b]上的凹函数.(2)若f(x)为[a,b]上的有界凹函数,则下列结论成立:
设(2E一CB)A=C,其中A是3阶方阵A的转置矩阵,且.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明:(1)存在c∈(a,b),使得f(c)=0;(2)存在ξi∈(a,b)(i=1,2),且ξ1≠ξ2,使得f’(ξi)+f(ξi)=
设向量组α1=(a,0,10)T,α2=(一2,1,5)T,α3=(一1,1,4)T,β=(1,b,c)T,试问:当a,b,c满足什么条件时,回答下列问题:β可由α1,α2,α3线性表出,但表示不唯一,求出一般表达式。
设α为n维非零列向量,E为n阶单位阵,试证A=E—为正交矩阵。
设函数f(x)在(0,+∞)上二阶可导,且f’’(x)>0,记un=f(n),n=1,2,…,又u1<u2,证明
设实对称矩阵A=,求可逆矩阵P,使P一1AP为对角矩阵,并计算行列式|A一E|的值.
设f(x)∈C[a,b],在(a,b)内二阶可导,且f’’(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫ab(x)dx=1.证明:∫abf(x)φ(c)dx≥f[∫abxφ(x)dx].
设4阶方阵A=[αγ2γ3γ4],B=[βγ2γ3γ4],其中α,β,γ2,γ3,γ4都是4维列向量,且|A|=4,|B|=1,则|A+B|=________.
随机试题
对比效应
在PowerPoint2003演示文稿中,超级链接所链接的目标不能是_______。
患者发热头痛,恶寒无汗,口渴面赤,胸闷不舒,苔白腻,脉浮数。治宜选用
突触前抑制的结构基础是哪一类型的突触
男,50岁,进行性贫血。消瘦、乏力半年。有时右腹隐痛,无腹泻。查体:右中腹部扪及肿块,肠鸣音活跃。如果需要手术治疗,术前准备最重要的是
原始凭证有错误的,应当由出具单位重开或更正的原始凭证在更正处应当()。
下列银行业从业人员的行为没有违反《银行业从业人员职业操守》中“同业竞争”有关规定的是( )。
Beforethenineteenthcentury,scientistswithaninterestintheseawerefewandfarbetween.CertainlyNewtonconsidereds
Whatdoesthespeakertalkabout?
Whogottomovetothenextstep?
最新回复
(
0
)