首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,且=2.证明: (Ⅰ)存在c∈(0,1),使得f(c)=0; (Ⅱ)存在ξ∈(0,1),使得f"(ξ)=f(ξ); (Ⅲ)存在η∈(0,1),使得f"(η)一3f’(η)+2f(η)=0.
设f(x)在[0,1]上连续,在(0,1)内可导,且=2.证明: (Ⅰ)存在c∈(0,1),使得f(c)=0; (Ⅱ)存在ξ∈(0,1),使得f"(ξ)=f(ξ); (Ⅲ)存在η∈(0,1),使得f"(η)一3f’(η)+2f(η)=0.
admin
2017-02-28
56
问题
设f(x)在[0,1]上连续,在(0,1)内可导,且
=2.证明:
(Ⅰ)存在c∈(0,1),使得f(c)=0;
(Ⅱ)存在ξ∈(0,1),使得f"(ξ)=f(ξ);
(Ⅲ)存在η∈(0,1),使得f"(η)一3f’(η)+2f(η)=0.
选项
答案
(Ⅰ)由[*]=2得 f(0)=0,f’
+
(0)=1,f(1)=0,f’
—
(1)=2. 由f’
+
(0)>0,存在x
1
∈(0,1),使得f(x
1
)>f(0)=0; 由f’
—
(1)>0,存在x
2
∈(0,1),使得f(x
2
)<f(1)=0. 因为f(x
1
)f(x
2
)<0,所以由零点定理,存在c∈(0,1),使得f(c)=0. (Ⅱ)令h(x)=e
x
f(x),因为f(0)=f(c)=f(1)=0,所以h(0)=h(c)=h(1)=0,由罗尔定理,存在ξ
1
∈(0,c),ξ
2
∈(c,1),使得h’(ξ
1
)=h’(ξ
2
)=0,而h’(x)=e
x
[f(x)+f’(x)]且e
x
≠0,所以f(ξ
1
)+f’(ξ
1
)=0,f(ξ
2
)+f’(ξ
2
)=0. 令φ(x)=e
—x
[f(x)+f’(x)],因为φ(ξ
1
)=φ(ξ
2
)=0,所以存在ξ∈(ξ
1
,ξ
2
)[*](0,1),使得φ’(ξ)=0,而φ’(x)=e
—x
[f"(x)一f(x)]且e
—x
≠0,于是f"(ξ)=f(ξ). (Ⅲ)令h(x)=e
—x
f(x),因为f(0)=f(c)=f(1)=0,所以h(0)=h(c)=h(1)=0. 由罗尔定理,存在η
1
∈(0,c),η
2
∈(c,1),使得h’(η
1
)=h’(η
2
)=0,而 h’(x)=e
—x
[f’(x)一f(x)]且e
—x
≠0, 所以f’(η
1
)一f(η
1
)=0,f’(η
1
)一f(η
2
)=0. 令φ(x)=e
—2x
[f’(x)一f(x)],因为φ(η
1
)=φ(η
2
)=0,所以存在η∈(η
1
,η
2
)[*](0,1),使得φ’(η)=0,而φ’(x)=e
—2x
[f(x)一3f’(x)+2f(x)]且e
—2x
≠0,于是 f"(η)一3f’(η)+2f(η)=0.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Zku4777K
0
考研数学一
相关试题推荐
[*]
A、 B、 C、 D、 B
利用数学期望的性质,证明方差的性质:(1)Da=0;(2)D(X+a)+DX;(3)D(aX)=a2DX.
证明f(x)=x-[x]在(-∞,+∞)上是有界周期函数.
证明:(1)周长一定的矩形中,正方形的面积最大;(2)面积一定的矩形中,正方形的周长最小。
设总体X~N(μ,σ2),其中σ2未知,s2=,样本容量n,则参数μ的置信度为1-a的置信区间为().
设幂级数的收敛半径分别为,则幂级数的收敛半径为().
随机试题
TCP/IP协议是具有四层功能的网络模型,不属于这四层的是________。
关于乳腺癌的描述,恰当的是
以下不属于影响项目组织结构的项目管理组织内部的因素是()。
下列各项利息收入,不计入企业所得税应纳税所得额的是( )。
对于个人贷款的特点,下列说法正确的有()。
从收支内容上看,政府公共财政的核心是()。
简述运用说服教育法的基本要求。
将强化分为直接强化、替代强化和自我强化的心理学家是()。
设A为3阶矩阵,α1,α2,α3为线性无关的向量组.若Aα1=2α1+α2+α3,Aα2=α2+2α3,Aα3=一α2+α3,则A的实特征值为________.
Youmightthinkyouarebeingobjective,butyoucould_________swaythereaderyou’reyourchoiceofwords.
最新回复
(
0
)