首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在区间[a,b]上连续,且区域D={(x,y)|a≤x≤b,a≤y≤b},证明:[∫ a b f(x)dx] 2 ≤(b-a) ∫ a b f2 (x)dx.
设函数f(x)在区间[a,b]上连续,且区域D={(x,y)|a≤x≤b,a≤y≤b},证明:[∫ a b f(x)dx] 2 ≤(b-a) ∫ a b f2 (x)dx.
admin
2017-05-31
82
问题
设函数f(x)在区间[a,b]上连续,且区域D={(x,y)|a≤x≤b,a≤y≤b},证明:[∫
a
b
f(x)dx]
2
≤(b-a) ∫
a
b
f
2
(x)dx.
选项
答案
因为f(x)在区间[a,b]上连续,则[f(x)一f(y)]
2
在区域D上可积,且 [*]
解析
在不等式的证明中,若含有一个函数f(x)的平方f
2
(x),以及f(x)的某种表达式的平方,一般采用构造一个新的函数形式,如[f(x)一f(y)]
2
等.
在矩形区域D上,对特殊的被积函数f(x,y)=g(x)h(y),二重积分不仅可以交换积分次序,而且还可以化为两个定积分的乘积.
转载请注明原文地址:https://www.kaotiyun.com/show/Ziu4777K
0
考研数学一
相关试题推荐
本题满分11分。
设二元函数z=xex+y+(x+1)ln(1+y),则dz丨(1,0)=___________.
将长度为1m的木棒随机地截成两段,则两段长度的相关系数为___________.
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B):②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则秩(A)=秩(B);④若秩(
在区间(0,1)中随机地取两个数,则这两个数之差的绝埘值小于1/2的概率为_________.
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f’’(x)<0,且f(1)=f’(1)=1,则().
设矩阵A=已知线性方程组AX=β有解但不唯一,试求:(Ⅰ)a的值;(Ⅱ)正交矩阵Q,使QTAQ为对角矩阵.
(2005年试题,19)设函数φ(y)具有连续导数,在围绕原点的任意分段光滑简单闭曲线L上,曲线积分的值恒为同一常数.证明:对右半平面x>0内的任意分段光滑简单闭曲线C上,有
(1998年试题,九)设y=f(x)是区间[0,1]上的任一非负连续函数.又设f(x)在区间(0,1)内可导,且证明(1)中的x0是唯一的.
设f(x,y),φ(x,y)均有连续偏导数,点M0(x0,y0)是函数z=f(x,y)在条件φ(x,y)=0下的极值点,又φ’(x0,y0)≠0,求证:曲面z=f(x,y)与柱面φ(x,y)=0的交线F在点P0(z0,y0,z0)(z0=f(x0,y0
随机试题
某流行病学调查发现,急性呼吸道感染和腹泻是导致农村5岁以下儿童死亡的主要原因,为降低其死亡率而进行的健康教育项目的一级目标人群是()
哪类药材可用泡沫指数或溶血指数作为质量指标
机电产品国际招标项目要求投标文件提供带*号技术参数(指标)的技术支持资料。下列资料中,属于有效技术支持资料的有()。
简述空运单的作用?
某股份有限公司共有甲、乙、丙、丁、戊、己、庚七位董事。某次董事会会议,董事甲、乙、丙、丁、戊、己参加,庚因故未能出席,也未书面委托其他董事代为出席。该次会议通过一项违反法律规定的决议,给公司造成严重损失。该次会议的会议记录记载,董事戊在该项决议表决时表明了
无效合同、被撤销合同的法律后果不包括()。
张某与王某签订了一份借款合同,张某为借款人,王某为出借人,借款数额为500万元,借款期限为两年。A机构、B机构为该借款合同进行保证担保,担保条款约定,如张某不能如期还款,A机构、B机构承担保证责任。同时,李某对张某与王某的借款合同进行了抵押担保,担保物为一
法国和比利时的科学家试图找出数学天才与常人的大脑是否有差别,他们在发表的报告中说,研究发现有人能够快速心算复杂数学问题,可能是因为他们能够使用其他人无法使用的大脑部位。科研人员利用正电子射线扫描技术对一位著名数学家的大脑和普通人的大脑进行了比较研究。他们发
阴阳合同是指合同当事人就同一事项订立两份以上内容不相同的合同,一份对内,一份对外,其中对外的一份并不是双方真实意思表示,而是以逃避国家税收为目的;对内的一份则是双方真实意思表示,可以是书面或口头的。“阴阳合同”是一种违规行为,在给当事人带来“利益”的同时,
HospitalityAnAmericanfriendhas【T1】______youtovisithisfamily.Butif【T2】______anAmerican’shomebefore,maybeyou’re
最新回复
(
0
)