首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设某种元件使用寿命(单位:小时)服从参数为λ的指数分布,其平均使用寿命为40小时,在使用中当一个元件损坏后立即更换另一个新的元件,如此继续下去.已知每个元件的进价为a元,试求在年计划中应为购买此种元件作多少预算,才可以有95%的把握保证一年够用(假定一年按
设某种元件使用寿命(单位:小时)服从参数为λ的指数分布,其平均使用寿命为40小时,在使用中当一个元件损坏后立即更换另一个新的元件,如此继续下去.已知每个元件的进价为a元,试求在年计划中应为购买此种元件作多少预算,才可以有95%的把握保证一年够用(假定一年按
admin
2019-12-26
63
问题
设某种元件使用寿命(单位:小时)服从参数为λ的指数分布,其平均使用寿命为40小时,在使用中当一个元件损坏后立即更换另一个新的元件,如此继续下去.已知每个元件的进价为a元,试求在年计划中应为购买此种元件作多少预算,才可以有95%的把握保证一年够用(假定一年按照2 000个工作小时计算).
选项
答案
假设一年需要n个元件,则预算经费为na元. 设每个元件的寿命为X
i
,则n个元件使用寿命为[*] 由题意[*]又[*] 由独立同分布中心极限定理,[*] [*] 故年预算至少应为64a元.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/ZhD4777K
0
考研数学三
相关试题推荐
设随机变量X的分布函数为求P{0.4<X≤1.3},P{X>0.5},P{1.7<X≤2}以及概率密度f(x).
设离散型随机变量X的概率分布为则随机变量Y=3X2—5的概率分布为______.
(1)求方程组AX=0的一个基础解系.(2)a,b,c为什么数时AX=B有解?(3)此时求满足AX=B的通解.
设η1,η2,η3为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n一3,证明η1,η2,η3为AX=0的一个基础解系.
假设随机变量X的密度函数f(x)=ce-λ|x|(λ>0,一∞<x<+∞),Y=|X|.(I)求常数c及EX,DX;(Ⅱ)问X与Y是否相关?为什么?(Ⅲ)问X与Y是否独立?为什么?
设二维随机变量(X,Y)的联合概率密度为,-∞<x,y<+∞,记Z=X2+Y2.求:(I)Z的密度函数;(Ⅱ)EZ,DZ;(Ⅲ)P{Z≤1}.
设A是n阶非零实矩阵,满足A*=AT.证明|A|>0.
计算行列式
已知线性方程组有无穷多解,而A是3阶矩阵,且分别是A关于特征值1,-1,0的三个特征向量,求矩阵A.
若4阶矩阵A与B相似,矩阵A的特征值为1/2,1/3,1/4,1/5,则行列式|B-1-E|=_________.
随机试题
正弦旋转变压器在定子的一个绕组中通入励磁电流,转子对应的一个输出绕组按高阻抗负载,其余绕组开路,则输出电压大小与转子转角()。
道德标准属于行政组织国内环境的()
治疗阴虚发热,应首选
A.路路通B.防己C.千年健D.乌梢蛇E.五加皮治疗风寒湿痹,腰膝冷痛,宜选用
设A,B是两个相互独立的事件,若P(A)=0.4,P(B)=0.5,则P(A∪B)等于()。
监理工程师在控制工程投资方面的主要业务内容包括()。
据《剑桥中国晚清史》载:“19世纪末20世纪初,中国(知识界)对外国作品的兴趣从纯科技转向制度和政治方面……对自然科学和应用科学的热情向社会科学和人文科学转移。新的着重点对以后几年中国的政治和社会发展起着重大影响。”下列事件构成“新的着重点”的有(
心理学家尼克尔斯和德书克提出的动机的认知理论是()。
在一个有向图G的拓扑序列中,顶点vi排列在vj之前,说明图G中(59)。
A、Thewaypeoplesleepshowstheirpersonality.B、Itiseasytochangeaperson’ssleepingstyle.C、Crouchedinthefetalpositi
最新回复
(
0
)