首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(a,b)内二阶可导,且f"(x)>0,证明:对于(a,b)内任意两点x1,x2及0≤t≤1,有f[(1一t)x1+tx2]<(1一t)f(x1)+ty(x2).
设f(x)在(a,b)内二阶可导,且f"(x)>0,证明:对于(a,b)内任意两点x1,x2及0≤t≤1,有f[(1一t)x1+tx2]<(1一t)f(x1)+ty(x2).
admin
2020-05-02
30
问题
设f(x)在(a,b)内二阶可导,且f"(x)>0,证明:对于(a,b)内任意两点x
1
,x
2
及0≤t≤1,有f[(1一t)x
1
+tx
2
]<(1一t)f(x
1
)+ty(x
2
).
选项
答案
方法一 设x
0
=(1-t)x
1
+tx
2
.f(x)在点x=x
0
处的一阶泰勒公式为 [*] 因为f"(x)>0,所以f(x)>f(x
0
)+f′(x
0
)(x-x
0
),故 f(x
1
)>f(x
0
)+f′(x
0
)(x
1
-x
0
),f(x
2
)>f(x
0
)+f′(x
0
)(x
2
-x
0
) 从而 (1-t)f(x
1
)+tf(x
2
) >(1-t)[f(x
0
)+f′(x
0
)(x
1
-x
0
)]+t[f(x
0
)+f′(x
0
)(x
2
-x
0
)] =(1-t)f(x
0
)+(1-t)f′(x
0
)(x
1
-x
0
)+tf(x
0
)+tf′(x
0
)(x
2
-x
0
) =f(x
0
)[(1-t)+t]+(1-t)tf′(x
0
)(x
1
-x
2
)+(1-t)tf’(x
0
)(x
2
-x
1
) =f(x
0
)=f[(1-t)x
1
+tx
2
] 因此 f[(1-t)x
1
+tx
2
]<(1-t)f(x
1
)+tf(x
2
) 方法二 设x
0
=(1-t)x
1
+tx
2
.于是由拉格朗日中值定理,得 f[(1-t)x
1
+tx
2
]-(1-t)f(x
1
)-tf(x
2
) =(1-t)f[(1-t)x
1
+tx
2
]-(1-t)f(x
1
)+tf[(1-t)x
1
+tx
2
]-tf(x
2
) =(1-t){f[(1-t)x
1
+tx
2
]-f(x
1
))+t{f[(1-t)x
1
+tx
2
]-f(x
2
)) =(1-t)tf′(ξ
1
)(x
2
-x
1
)+t(1-t)f′(ξ
2
)(x
1
-x
2
) =(1-t)t(x
2
-x
1
)[f′(ξ
1
)-f′(ξ
2
)] =(1-t)t(x
2
-x
1
)(ξ
1
-ξ
2
)f"(ξ) 不妨设x
1
<x
2
2,于是x
1
<ξ
1
<(1-t)x
1
+tx
2
<ξ<x
2
,所以x
2
>x
1
,ξ
2
>ξ
1
,再由f"(x)>0,可推知(1-t)t(x
2
-x
1
)(ξ
1
-ξ
2
)f"(ξ)<0.因此 f[(1-t)x
1
+tx
2
]<(1-t)f(x
1
)+tf(x
2
)
解析
转载请注明原文地址:https://www.kaotiyun.com/show/ZXv4777K
0
考研数学一
相关试题推荐
设曲线L位于Oxy平面的第一象限内,过L上任意一点M处的切线与y轴总相交,把交点记作A,则总有长度,若L过点,求L的方程.
设离散型随机变量X的分布函数为则Y=X2+1的分布函数为___________.
由曲线y=x3,y=0及x=1所围图形绕x轴旋转一周得到的旋转体的体积为_______.
设总体X在区问(0,θ)内服从均匀分布,X1,X2,X3是来自总体的简单随机样本.证明:都是参数θ的无偏估计量,试比较其有效性.
若f(x,y)为关于z的奇函数,且积分区域D关于y轴对称,则当f(x,y)在D上连续时,必有=______________.
设f(x)=∫0xdt,g(x)=∫0xsin2(x-t)dt,则当x→0时,g(x)是f(x)的().
设则f(x,y)在点O(0,0)处()
若则
若则
随机试题
在处理国际关系和外交关系方面,我们要()
外阴癌的转移方式以________及________为主,晚期可出现________转移。
性成熟期又称________,一般持续________年。
颅内压增高时的典型临床表现是()
有关CT噪声定义的解释,正确的是
水痘中毒性菌痢
县级以上各级人民政府要依法履行生产安全事故应急救援职责,做好应急救援准备,尽可能减少事故造成的人员伤亡和财产损失。依据《安全生产法》的规定,下列不属于政府应急救援相关职责的是()。
作为统计调查对象的企事业单位或者其他组织有拒绝、阻碍统计调查、统计检查的行为,可以处一万元以下的罚款;情节严重的,并处一万元以上五万元以下的罚款。()
薪酬标准档次的调整包括()。
A、Assemblingabookcasecanbefrustrating.B、She’llgivethemanherbookcase.C、She’llhelphemanassemblehisbookcase.D、Th
最新回复
(
0
)