首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs,β都是n维向量,证明:
设α1,α2,…,αs,β都是n维向量,证明:
admin
2018-11-23
40
问题
设α
1
,α
2
,…,α
s
,β都是n维向量,证明:
选项
答案
设(Ⅰ)是α
1
,α
2
,…,α
s
的一个最大无关组,则它也是α
1
,α
2
,…,α
s
,β中的一个无关组. 若β可用α
1
,α
2
,…,α
s
表示,则β可用(Ⅰ)表示(因为α
1
,α
2
,…,α
s
和(Ⅰ)等价!),于是(Ⅰ)增添β后相关,从而(Ⅰ)也是α
1
,α
2
,…,α
s
,β的最大无关组,r(α
1
,α
2
,…,α
s
,β)=r(α
1
,α
2
,…,α
s
). 若β不可用α
1
,α
2
,…,α
s
表示,则β不可用(Ⅰ)表示,(Ⅰ)增添β后无关,从而(Ⅰ)不是α
1
,α
2
,…,α
s
,β的极大无关组,此时(Ⅰ),β是α
1
,α
2
,…,α
s
,β的极大无关组,r(α
1
,α
2
,…,α
s
,β)=r(α
1
,α
2
,…,α
s
)+1.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Z6M4777K
0
考研数学一
相关试题推荐
已知A=,且A~B,求a,b,c的值.
设函数z=f(u),方程确定u是x,y的函数,其中f(u),φ(u)可微,P(t),φ’(u)连续,且φ’(u)≠1.求
设f(x)在[a,b]上满足|f"(x)|≤2,且f(x)在(a,b)内取到最小值.证明:|f’(a)|+|f’(b)|≤2(b一a).
设F(x)为f(x)的原函数,且当x≥0时,f(x)F(x)=,又F(0)=1,F(x)>0,求f(x).
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:(1)存在ξ∈(a,b),使得f’(ξ)=2ξf(ξ).(2)存在η∈(a,b),使得ηf’(η)+f(η)=0.
设f(x)在区间[a,b]上可导,且满足。证明至少存在一点ξ∈(a,b),使得f’(ξ)=f(ξ).tanξ。
设λ1、λn分别为n阶实对称矩阵A的最小和最大特征值,X1、Xn分别为对应于λ1和λn的特征向量,记证明:λ1≤f(X)≤λn,minf(X)=λ1=f(X1),maxf(X)=λn=f(Xn)
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3;Aα3=2α2+3α3.(1)求矩阵B,使A[α1,α2,α3]=[α1,α2,α3]B;(2)求A的特征值;(3)求一个可逆矩阵P,使得P
设随机变量X1,X2,X3,X4独立同分布,P(X1=0)=0.6,P(X1=1)=0.4.求X=的概率分布.
(15年)n阶行列式
随机试题
#include<stdio.h>voidfun(intm,intn,intar[][4],int*bar){inti,j,x;for(i=0;i<3;i++){x=ar[i][0];f
患者男,24岁,长期佩戴角膜接触镜。10天前开始左眼轻度流泪、异物感、视力下降,近3天出现剧烈疼痛。裂隙灯下见角膜放射状浸润。应高度怀疑何种疾病()
患者,男,78岁,近日来出门后不识回家的路,把衣服当裤子穿,把裤子当衣服穿,丢三落四,经常忘记当前发生的事情。与该疾病治疗相关的药物中,哪项除外()。
下列关于税金的叙述不正确的是()
描述性调研帮助企业理清营销过程中相互关联的事物之间的因果关系;预测性调研可帮助企业发现和评估新的市场机会,有利于企业把握机遇、拓展业务;描述性调研帮助企业对决策可能产生的结果进行预测。()
下列关于个人耐用消费品贷款的说法正确的有()。
被辞退人员应当在接到《辞退国家公务员通知书》()内,办理公务就交接手续。
复议申请人为省部级单位的,复议机关是国务院。()
WilsonUniversitySecurityOfficeStartingonApril1,securitybarswillbeinstalledattheentrancestoalluniversityfacult
Kitchendutiesmayhavetraditionallybeenviewedaswomen’swork,butnotattheWhiteHouse.Untilnow:CristetaComerfordhas
最新回复
(
0
)