首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明: (1)AB=BA; (2)存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明: (1)AB=BA; (2)存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
admin
2019-05-11
68
问题
设A,B为三阶矩阵,且AB=A-B,若λ
1
,λ
2
,λ
3
为A的三个不同的特征值,证明:
(1)AB=BA;
(2)存在可逆矩阵P,使得P
-1
AP,P
-1
BP同时为对角矩阵.
选项
答案
(1)由AB=A-B得A-B-AB+E=E,(E+A)(E-B)=E, 即E-B与E+A互为逆矩阵,于是(E-B)(E+A)=E=(E+A)(E-B), 故AB=BA. (2)因为A有三个不同的特征值λ
1
,λ
2
,λ
3
,所以A可以对角化,设A的三个线性无关的特征向量为ξ
1
,ξ
2
,ξ
3
,则有A(ξ
1
,ξ
2
,ξ
3
)=(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
), BA(ξ
1
,ξ
2
,ξ
3
)=B(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
), AB(ξ
1
,ξ
2
,ξ
3
)=B(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
),于是有ABξ
i
=λ
i
βξ
i
=1,2,3. 若Bξ
i
≠0,则Bξ
i
是A的属于特征值λ
i
的特征向量,又λ
i
为单根,所以有Bξ
i
=μ
i
ξ
i
; 若Bξ
i
=0,则ξ
i
是B的属于特征值。的特征向量.无论哪种情况,B都可以对角化,而且ξ
i
是B的特征向量,因此,令P=(ξ
1
,ξ
2
,ξ
3
),则P
-1
AP,P
-1
BP同为对角阵.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/YfV4777K
0
考研数学二
相关试题推荐
设f(χ)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a<b=f(b).证明:存在ξi∈(a,b)(i=1,2,…,n),使得=1.
设f(χ)在[a,b]上连续,在(a,b)内可导,且f′+(a)f′-(b)<0.证明:存在ξ∈(a,b),使得f′(ξ)=0.
求二元函数f(χ,y)=χ2(2+y2)+ylny的极值.
设曲线y=lnχ与y=k相切,则公共切线为_______.
设λ1,λ2,λ3是三阶矩阵A的三个不同特征值,α1,α2,α3分别是属于特征值λ1,λ2,λ3的特征向量,若α1,A(α1+α2),A2(α1+α2+α3)线性无关,则λ1,λ2,λ3满足_______.
曲线(χ-1)3=y2上点(5,8)处的切线方程是________.
设f(x),g(x)在区间[一a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(一x)=A(A为常数)(1)证明∫-aaf(x)g(x)dx=A∫0ag(x)dx;(2)利用(1)的结论计算定积分
求函数f(x)=,所有的间断点及其类型。
求函数f(x)=的间断点并指出其类型.
建一容积为V0的无盖长方体水池,问其长、宽、高为何值时有最小的表面积.
随机试题
最适宜用来鉴别淋巴细胞白血病与淋巴瘤性白血病的细胞化学染色是
在监督检查中需进行的检验鉴定、检测等监督检验活动的承担单位或机构是()。
根据《关于加强小型病险水库除险加固项目验收管理的指导意见》(水建管[2013]178号)规定,小型病险水库除险加固项目法人验收中分部工程验收的主要内容包括()。
公平理论是()提出来的。
幼儿园的重要任务之一是()。
试述显性课程和隐性课程的区别与联系。
贯彻“三个代表”重要思想,关键在()。
货币时间价值
InBritain,winteristheseasonnotonlyforvisitstothetheatre,opera,concertsandballet,butalsoforshoppingorforsi
Oneofthebasiccharacteristicsofcapitalismistheprivateownershipofthemajormeansofproduction—capital.Theownership
最新回复
(
0
)