首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
如果数列{xn}收敛,{yn}发散,那么{xnyn}是否一定发散?如果{xn}和{yn}都发散,那么{xnyn}的敛散性又将如何?
如果数列{xn}收敛,{yn}发散,那么{xnyn}是否一定发散?如果{xn}和{yn}都发散,那么{xnyn}的敛散性又将如何?
admin
2016-09-13
64
问题
如果数列{x
n
}收敛,{y
n
}发散,那么{x
n
y
n
}是否一定发散?如果{x
n
}和{y
n
}都发散,那么{x
n
y
n
}的敛散性又将如何?
选项
答案
在题设两种情况下,{x
n
y
n
}的敛散性都不能确定.现在先就{x
n
}收敛,{y
n
}发散的情况来分析.利用y
n
=[*](x
n
≠0)这个恒等式,就可得到下述结论:若{x
n
}收敛且不收敛于零,{y
n
}发散,则{x
n
y
n
}必发散.这是因为若{x
n
y
n
}收敛,且又{x
n
}收敛而极限不等于零,则从上述恒等式及极限相除法则,可知{y
n
}收敛,这与假设矛盾.若[*]=0,且{y
n
}发散,则{{x
n
}y
n
}可能收敛,也可能发散,如: ①x
n
=[*],y
n
=n,则x
n
y
n
=1,于是{x
n
y
n
}收敛. ②x
n
=[*],y
n
=(-1)
n
n,则x
n
y
n
=(-1)
n
,于是{x
n
y
n
}发散. 现在再就{x
n
}和{y
n
}都发散的情况来分析{x
n
y
n
}的敛散性.有下面的结论:若{x
n
}和{y
n
}都发散,且两者至少有一个是无穷大,则{x
n
y
n
}必发散.这是因为如果{x
n
y
n
}收敛,而{x
n
}为无穷大,从等式y
n
=[*]便得到{y
n
}收敛于零,这与假设矛盾. 若{x
n
}和{y
n
}都不是无穷大且都发散,则{x
n
y
n
}可能收敛,也可能发散,如 ③x
n
=y
n
=(-1)
n
,有x
n
y
n
=1,于是{x
n
y
n
}收敛. ④x
n
=(-1)
n
,y
n
=1-(-1)
n
,有x
n
y
n
=(-1)
n
-1,于是{x
n
y
n
}发散.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/YJT4777K
0
考研数学三
相关试题推荐
材料1 在民主革命时期,经过胜利、失败,再胜利、再失败,两次比较,我们才认识了中国这个客观世界。在抗日战争前夜和抗日战争时期,我写了一些论文……那些论文和文件,只有在那个时候才能产生,在以前不可能,因为没有经过大风大浪,没有两次胜利和两次失败的比较。还
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
判别级数的敛散性.
判别下列级数是否收敛,如果收敛,是条件收敛还是绝对收敛?
代数学基本定理告诉我们,n次多项式至多有n个实根,利用此结论及罗尔定理,不求出函数f(x)=(x-1)(x-2)(x-3)(x-4)的导数,说明方程fˊ(x)=0有几个实根,并指出它们所在的区间.
计算下列极限:
讨论下列级数是否收敛?如果收敛,是条件收敛还是绝对收敛?
设线性方程组x1+x2+x3=0;x1+2x2+ax3=0;x1+4x2+a2x3=0;与方程x1+2x2+x3=a-1;有公共解,求a的值及所有公共解.
设f∈R2π,并且f(x)是奇函数,则它的傅里叶多项式的各项都是正弦函数;若f(x)是偶函数,则它的傅里叶多项式的各项除常数项外都是余弦函数.
随机试题
能利用含硫氨基酸生成硫化氢的细菌是
随着投融资的发展,资金来源更加广阔,资金的使用覆盖了()。
对于现场交货的设备,一般由( )在现场组装、调试、试运行。
企业在无形资产开发阶段发生的职工薪酬,可能计入的会计科目有()。
根据法的创制方式和发布形式不同,可以将法分为( )。
川剧主要流行于四川、陕西和贵州部分地区。()
关于我校周边道路停放汽车的函市十中(函)字(10)第078号8大队:9月10日是我校100周年校庆日,届时将会有大批校友开车来校参加校庆活动,由于我校内不能停放大量汽车。因此,我们要求贵大队准许参加我校校庆活动的校友在学校周边
一天,张处长和刘处长每人交给你一项任务,但是你忙了一天,结果只完成了一项。刘处长把你批评了一通,你怎么想?怎么做?
若在(-∞,∞)内f(-x)=f(x),在(-∞,0)内f(x)>0且f″(x)<0,则在(0,+∞)内().
ThefamilyisthecenterofmosttraditionalAsians’lives.Manypeopleworryabouttheirfamilieswelfare,reputation,andhono
最新回复
(
0
)