首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组a1,a2线性无关,向量组a1+b,a2+易线性相关,证明:向量b能由向量组a1,a2线性表示。
设向量组a1,a2线性无关,向量组a1+b,a2+易线性相关,证明:向量b能由向量组a1,a2线性表示。
admin
2017-01-13
56
问题
设向量组a
1
,a
2
线性无关,向量组a
1
+b,a
2
+易线性相关,证明:向量b能由向量组a
1
,a
2
线性表示。
选项
答案
因为a
1
,a
2
线性无关,a
1
+b,a
2
+b线性相关,所以b≠0,且存在不全为零的常数k
1
,k
2
,使k
1
(a
1
+b)+k
2
(a
2
+b)=0,则有(k
1
+k
2
)b=一k
1
a
1
—k
2
a
2
。 又因为a
1
,a
2
线性无关,若k
1
a
1
+k
2
a
2
=0,则k
1
=k
2
=0,这与k
1
,k
2
不全为零矛盾,于是有 k
1
a
1
+k
2
a
2
≠0,(k
1
+k
2
)b≠0。 综上k
1
+k
2
≠0,因此由(k
1
+k
2
)b=一ka
1
—k
2
a
2
得 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Xxt4777K
0
考研数学二
相关试题推荐
已知曲线C:,求C上距离xOy面最远的点和最近的点。
设D={(x,y)|x2+y2≤x},求.
设f(x)在[0,+∞)上连续,且∫01f(x)dx<-,证明:至少存在一个ξ∈(0,+∞),使得f(ξ)+ξ=0
设函数f(x)在[0,1]上具有二阶导数f"(x)≤0,试证明:∫01f(x2)dx≤
设f(x)的一阶导数在[0,1]上连续,f(0)=f(1)=0求证:|∫01f(x)dx|≤|f’(x)|
设D1是由抛物线y=2x2和直线x=a,x=2及y=0所围成的平面区域;D2是由抛物线y=2x2和直线y=0,x=0所围成的平面区域,其中0<a<2.问当a为何值时,V1+V2取最大值?试求此最大值。
设非齐次线性微分方程y’+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解为________。
a为何值时y=ax2与y=lnx相切?
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2,(1)求实数a的值;(2)求正交变换x=Qy将f化为标准形.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
随机试题
A、室前负荷加重B、右心室后负荷加重C、左心室前负荷加重D、左心室后负荷加重E、两心室前负荷加重输液过多过快()
腹部闭合性损伤诊断的关键在于确定有无
利润表是反映企业在某一特定日期的经营成果实现情况的报表。 ( )
依据所承担的职责和作用的不同,基金市场的参与主体主要分为()。Ⅰ.基金当事人Ⅱ.基金市场服务机构Ⅲ.基金监管机构Ⅳ.基金自律组织
影响工作满意度的因素不包括()。
“2013年中国好书”包括《繁花》《带灯》《中国经济双重转型之路》《3D打印:从想象到现实》等,其中,《带灯》呈现了中国乡土社会在时代转型中复杂而尴尬的处境。小说中“带灯”是指()。
李工程师家有4口人,母亲、妻子、儿子和他本人。2013年,4人的年龄和为152岁.平均年龄正好比李工程师的年龄小2岁,比妻子的年龄大2岁。若2007年时,妻子的年龄正好是儿子的6倍。问哪一年时,母亲的年龄是妻子年龄的2倍?()
八届十中全会对邓子恢等人提倡建立包产到户的生产责任制进行错误批判,并将其称之为()。
设随机变量X的概率密度为f(x)=(一∞<x<+∞),则随机变量X的二阶原点矩为________.
A、 B、 C、 D、 C
最新回复
(
0
)