首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2004年]函数在区间( )内有界.
[2004年]函数在区间( )内有界.
admin
2019-03-30
103
问题
[2004年]函数
在区间( )内有界.
选项
A、(-1,0)
B、(0,1)
C、(1,2)
D、(2,3)
答案
A
解析
解一 大家知道,若f(x)在有限闭区间[a,b]上连续,则f(x)一定在[a,b]上有界,但若f(x)在开区间(a,b)内连续,则f(x)在(a,b)内未必有界,而如果再附加条件
和
存在,则f(x)必在(a,b)内有界,这就是命题1.1.1.1(2).由于下述极限
存在,又f(x)在(-1,0)内连续,故由命题1.1.1.1(2)知f(x)在(-1,0)内有界.仅(A)入选.
解二 因
可补充定义
则补充定义后的函数f(x)成为有界闭区间[-1,0]上的连续函数.利用有界闭区间上连续函数的有界性可知f(x)在[-1,0)
[-1,0]上有界.仅(A)入选.
解三 因
由命题[1.1.1.1(1):如果x∈(a,b),
或
则f(x)在(a,b)内无界。即知,f(x)在(0,1)及(1,2),(2,3)内均无界.仅(A)入选.
注:命题1.1.1.1 (1)如果x
0
(a,b),
或
则f(x)在(a,b)内无界.
(2)如果
和
存在,且f(x)在(a,b)内连续,则f(x)在(a,b)内有界.
转载请注明原文地址:https://www.kaotiyun.com/show/XiP4777K
0
考研数学三
相关试题推荐
函数y=C1ex+C2e—2x+xex满足的一个微分方程是()
已知函数f(x)满足方程f"(x)+f’(x)一2f(x)=0及f"(x)+f(x)=2ex。(Ⅰ)求f(x)的表达式;(Ⅱ)求曲线y=f(x2)∫0xf(一t2)dt的拐点。
设f(x,y)连续,且f(x,y)=x+f(u,υ)dudυ,其中D是由y=,x=1,y=2所围成的区域,则f(x,y)=________。
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵(k为常数),且AB=O,求线性方程组Ax=0的通解。
设三阶常系数齐次线性微分方程有特解y1=ex,y2=2xex,y3=3e-x,则该微分方程为().
设X为一个总体且E(X)=k,D(X)=1,X1,X2,…,Xn为来自总体的简单随机样本,令,问n多大时才能使P?
某厂家生产的一种产品同时在两个市场上销售,售价分别为p1,p2,销售量分别为q1,q2,需求函数分别为q1=24-0.2p1,q2=10-0.05p2,总成本函数为C=35+40(q1+q2),问厂家如何确定两个市场的销售价格,能使其获得总利润最大?最
(2004年)设级数的和函数为S(x),求:Ⅰ)S(x)所满足的一阶微分方程;Ⅱ)S(x)的表达式.
(2004年)设f(x)在(一∞,+∞)内有定义,且则()
[2004年]设某商品的需求函数Q=100-5P,其中价格P∈(0,20),Q为需求量.推导(其中R为收益),并用弹性Ed说明价格在何范围内变化时,降低价格反而使收益增加.
随机试题
混凝土冬期施工,配置混凝土用水泥应优先选用()。
我国2014年修订的《环境保护法》,在“环境”的定义中新增加的环境要素是【】
关于一般侵权行为构成要件的具体表述中,不正确的是()。
会阴湿热敷最常用的药液是
地芬诺酯为
多发性抽搐症治疗的基本法则是
病理改变主要在肾而临床表现主要在膀胱,见于
不需记录患者出入量的情况是
文化“必定有异”,文明“难免有异”;文化“必须存异”,文明“可以存异”。这就是文化与文明的区别。所以,文化可以交流,甚至融合,但最终“存异”。文明的趋向,却是“求同”。因为文明的背后,是核心价值;而只有人类的共同价值,才最有价值。由此可见,只要把握了全人类
Whatistheprobablerelationshipbetweenthetwospeakers?
最新回复
(
0
)