首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为正交矩阵,则下列矩阵中不属于正交矩阵的是( )
设A为正交矩阵,则下列矩阵中不属于正交矩阵的是( )
admin
2017-01-21
39
问题
设A为正交矩阵,则下列矩阵中不属于正交矩阵的是( )
选项
A、A
T
B、A
2
C、A
*
D、2A
答案
D
解析
因A为正交矩阵,所以AA
T
=A
T
A=E,且|A|
2
=1。而(2A)(2A)
T
=4AA
T
=4E,故2A不为正交矩阵。所以选D。
事实上,由A
T
(A
T
)
T
=A
T
A=E,(A
T
)
T
A
T
=AA
T
=E,可知A
T
为正交矩阵。
由A
2
(A
2
)
T
=A(AA
T
)A
T
=AA
T
=E,(A
2
)
T
A
2
=A
T
(A
T
)A=A
T
A=E,可知A
2
为正交矩阵。
由A
*
=|A|A
—1
=|A|A
T
,可得
A
*
(A
*
)
T
=|A|A
T
(|A|A)=|A|
2
A
T
A=|A|
2
E=E,(A
*
)
T
A
*
=(|A|A)|A|A
T
=|A|
2
AA
T
=|A|
2
E=E,故A
*
为正交矩阵。
转载请注明原文地址:https://www.kaotiyun.com/show/XQH4777K
0
考研数学三
相关试题推荐
设随机变量X与Y独立,其中X的概率分布为而Y的概率密度为F(y),求随机变量u=X+Y的概率密度g(u).
投掷一枚硬币三次,观察三次投掷出现正反面情况,比如一种可能结果为HTT(表示第一次出现的是正面,第二次和第三次出现的都是反面).(1)写出所有可能结果构成的样本空间Ω;(2)事件A表示恰好出现两次正面,写出A中所包含的所有可能结果;
设函数y=y(x)往(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.试将x=x(y)所满足的微分方程d2x/dy2+(y+sinx)(dx/dy)3=0变换为y=y(x)满足的微分方程;
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解必是
设随机变量X和Y的相关系数为0.9,若Z=X-0.4,则Y与Z的相关系数为____________.
设随机变量X服从正态分布N(0,1),对给定的α∈(0,1),数uα满足P{X>uα}=α,若P{丨X丨
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
写出下列各试验的样本空间:(1)掷两枚骰子,分别观察其出现的点数;(2)观察一支股票某日的价格(收盘价);(3)一人射靶三次,观察其中靶次数;(4)一袋中装有10个同型号的零件,其中3个合格7个不合格,每次从中随意取
设F(x)在闭区间[0,c]上连续,其导数F’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明不等式:F(a+b)≤F(a)+F(b),其中常数,a,b满足条件0≤a≤b≤a+b≤c.
随机试题
(2021年济南历下区)依据皮亚杰的道德认知发展理论,处于自律道德水平的个体的典型表现是能够()
男,28岁。因车祸颌面部外伤8小时后急诊。检查:患者左面部肿胀明显,眶周眼睑及结膜下淤斑,压痛,张口受限,张口度半指,咬合关系正常。常规行X线检查时,最好拍摄
喘证的特征是悬饮的特征是
以下属于劳动过程中的职业病危害的因素是()。
下列有关所得税的说法中,正确的有()。
Mr.Weeksisfiftyyearsold.He’staughtmathsinamiddleschoolfortwentyyears.Heworksandalwayscomestohisofficeon
沙漠化是由于自然因素和人类活动的影响而引起生态系统的破坏,使原来非沙漠地区出现了类似沙漠环境的变化。()
A、 B、 C、 D、 D特殊值代入法,如a=0.5,b=0.5;那么=,由此可以排除A、B、C。
MusictoYourGearsMusicmaysoothethesavagebreast,butitcanalsodamageyourhealthwhenyouareatthewheel.(A)Recentr
A、Waitingfortheirfight.B、Waitingforabus.C、Takingataxi.D、Winningagame.B根据女士的话推断,他们在等某种交通工具,而且是每十分钟来一辆,所以最有可能的就是公共汽车
最新回复
(
0
)