首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为n阶矩阵,且r(A)+r(B)<n.证明:A,B有公共的特征向量.
设A,B为n阶矩阵,且r(A)+r(B)<n.证明:A,B有公共的特征向量.
admin
2019-11-25
53
问题
设A,B为n阶矩阵,且r(A)+r(B)<n.证明:A,B有公共的特征向量.
选项
答案
因为r(A)+r(B)<n,所以r(A)<n,r(B)<n,于是λ=0为A,B公共的特征值, A的属于特征值λ=0的特征向量即为方程组AX=0的非零解; B的属于特征值λ=0的特征向量即为方程组BX=0的非零解, 因为r[*]≤r(A)+r(B)<n,所以方程组[*]有非零解,即A,B有公共的特征向量.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/XID4777K
0
考研数学三
相关试题推荐
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2一α3,如果β=α1+α2+α3+α4,求线性方程组AX=β的通解.
已知线性方程组问:(1)a,b为何值时,方程组有解;(2)方程组有解时,求出方程组的导出组的基础解系;(3)方程组有解时,求出方程组的全部解.
设f(x)在区间[0,1]上连续,在区间(0,1)内存在二阶导数,且f(0)=f(1).证明:存在ξ∈(0,1)使2f’(ξ)+ξf"(ξ)=0.
设fn(x)=x3+anx—1,其中n是正整数,a>1.(1)证明方程fn(x)=0有唯一正根rn;(2)若Sn=r1+r2+…+rn,证明
证明:当成立.
设顾客在某银行窗口等待服务的时间X(单位:分钟)服从参数为的指数分布.若等待时间超过10分钟,他就离开.设他一个月内要来银行5次,以Y表示一个月内他没有等到服务而离开窗口的次数,求Y的分布律及P{Y≥1).
甲袋中有3个白球2个黑球,乙袋中有4个白球4个黑球,今从甲袋中任取2球放入乙袋,再从乙袋中任取一球,求该球是白球的概率.
设有甲、乙两名射击运动员,甲命中目标的概率是0.6,乙命中目标的概率是0.5,求下列事件的概率:(1)从甲、乙中任选一人去射击,若目标被命中,则是甲命中的概率;(2)甲、乙两人各自独立射击,若目标被命中,则是甲命中的概率.
设(Ⅰ)讨论f(x)的连续性,若有间断点并指出间断点的类型;(Ⅱ)判断f(x)在(-∞,1]是否有界,并说明理由。
设事件A,B相互独立,P(A)=0.3,且P(A+)=0.7,则P(B)=__________.
随机试题
Britishscientistsarepreparingtolaunchtrialsofaradicalnewwaytofightcancer,whichkillstumoursbyinfectingthemwi
禁止内幕交易的主要措施有( )。
下列属于银行附属资本的是()。
要约是指()。
下列不属于肥胖症的表现的是()。
水杯:透明:光线
张载说:“有象斯有对,对必反其为。有反斯有仇,仇必和而解。”这告诉我们()。
某银行保险柜被橇,巨额现金和证券失窃。警察局经过侦破,拘捕了三名重大的嫌疑犯:施辛格,赖普顿和安杰士。通过审讯,查明了以下的事实:(1)保险柜是用专门的作案工具撬开的,使用这种工具必须受过专门的训练。(2)只有施辛格作案,安杰士才作案。
Couldyou______reasonsandexamplesforyouranswer7
ASuccessStoryAt19,BenWayisalreadyamillionaire,andoneofagrowingnumberofteenagerswhohave【C1】______theirfo
最新回复
(
0
)