首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(α1,α2,α3,α4),其中α2,α3,α4线性无关,α1=2α2一α3,向量b=α1+α2+α3+α4,求方程组Ax=b的通解。
设矩阵A=(α1,α2,α3,α4),其中α2,α3,α4线性无关,α1=2α2一α3,向量b=α1+α2+α3+α4,求方程组Ax=b的通解。
admin
2017-12-29
94
问题
设矩阵A=(α
1
,α
2
,α
3
,α
4
),其中α
2
,α
3
,α
4
线性无关,α
1
=2α
2
一α
3
,向量b=α
1
+α
2
+α
3
+α
4
,求方程组Ax=b的通解。
选项
答案
已知α
2
,α
3
,α
4
线性无关,则r(A)≥3。又由α
1
,α
2
,α
3
线性相关可知α
1
,α
2
,α
3
,α
4
线性相关,故r(A)≤3。 终上所述,r(A)=3,从而原方程组的基础解系所含向量个数为4—3=1。又因为 α
1
=2α
2
一α
3
[*]α
1
一2α
2
+α
3
=0[*](α
1
,α
2
,α
3
,α
4
)[*] 所以x=(1,一2,1,0)
T
是方程组Ax=0的基础解系。 又由b=α
1
+α
2
+α
3
+α
4
可知x=(1,1,1,1)
T
是方程组Ax=b的一个特解。 于是原方程组的通解为 x=(1,1,1,1)
T
+c(1,一2,1,0)
T
,c∈R。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/WQX4777K
0
考研数学三
相关试题推荐
如图1.3—1,设曲线方程为y=x2+,梯形OABC的面积为D,曲边梯形OABC的面积为D1,点A的坐标为(a,0),a>0.证明:
计算
设y(x)是方程y(4)一y"=0的解,且当x→0时,y(x)是x的3阶无穷小,求y(x).
设φ(x)是以2π为周期的连续函数,且Ф(x)=φ(x),Ф(0)=0.方程是否有以2π为周期的解?若有,请写出所需条件;若没有,请说明理由.
设向量组α1,α2,…,αs(s≥2)线性无关,且β1=α1+α2,β1=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1.讨论向量组β1,β2,…,βs的线性相关性.
设函数f(x),g(x)在[a,b]上连续且单调增,证明:∫abf(x)dx∫abg(x)dx≤(b一a)∫abf(x)g(x)dx.
试证明:曲线恰有三个拐点,且位于同一条直线上.
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解。(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A;(Ⅲ)求A及,其中E为3阶单位矩阵。
设X和Y独立同分布,且均服从区间(0,1)上的均匀分布,求的分布函数F(u)。
设二维随机变量(X,Y)服从区域G上的均匀分布,其中G是由x—y=0,x+y=2与y=0所围成的三角形区域。求条件概率密度fX|Y(x|y)。
随机试题
属于“密级”的文件有()
与慢性念珠菌感染有关的疾病是
胃、十二指肠溃疡外科手术的绝对适应证是
职位分析需要收集和整理的信息不包括()。
某施工企业拟租赁一施工设备,租金按附加率法计算,每年年末支付。已知设备的价格为95万元,租期为6年,折现率为8%,附加率为5%,则该施工企业每年年末应付租金为()万元。
下列各项中,属于筹资活动产生的现金流量的有()。
使少年儿童“一面翻书,一面狂笑”的西班牙作家塞万提斯的杰作是()。
请简述秘书工作的特征。
根据以下资料,回答116—120题注:2009年1—8月竞猜型彩票销售额为35.41亿元,同比增加了5.69亿元。2008年1—8月,三大类彩票累计销售量为()亿元。
设都是正项级数.试证:
最新回复
(
0
)