首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2013年] 设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1,证明: 存在η∈(一1,1),使得f″(η)+f′(η)=1.
[2013年] 设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1,证明: 存在η∈(一1,1),使得f″(η)+f′(η)=1.
admin
2019-06-09
70
问题
[2013年] 设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1,证明:
存在η∈(一1,1),使得f″(η)+f′(η)=1.
选项
答案
证一 因待证等式可改写为[f′(x)+f(x)一x]′∣
x=ξ
=0,故作辅助函数 F(x)=f′(x)+f(x)一x,因F(1)=f′(1)+f(1)一1=f′(1), F(一1)=f′(一1)+f(一1)+1=f′(一1)一f(1)+1=f′(一1)=f′(1) (因f′(x)为偶函数). 显然F(x)在[-1,1]上可导,满足罗尔定理的条件,由该定理知,存在η∈(一l,1)使 F′(η)=0,即[f′(x)+f(x)一x]′∣
x=ξ
=f″(η)+f′(η)一1=0. 证二 待证等式可改写为[f′(η)一1]′+f′(η)一l=0,两边乘以e
η
,则 e
η
[f′(η)一1]′+e
η
[f′(η)一1]={e
η
[f′(η)一1]}′=0. 于是令F(x)=e
x
[f′(x)一1].由(I)知存在ξ∈(0,1)使f′(ξ)=1,又因f′(x)为偶函数,故f′(一ξ)=f′(ξ)=1,则F(ξ)=e
ξ
[f′(ξ)一1]=0, F(一ξ)=e
-ξ
[f′(一ξ)一1]=e
-ξ
[f′(ξ)一1]=0. 在区间[一ξ,ξ]上对F(x)使用罗尔定理,得到存在η∈(-ξ,ξ)[*](一1,1)使得F′(η)=0. 由F′(x)=e
x
[f′(x)一1]+e
x
f″(x)得到F′(η)=e
η
[f′(η)一1]+e
η
f″(η)=0,即f″(η)+ f′(η)=1.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/VYV4777K
0
考研数学二
相关试题推荐
设函数f(x)==___________。
设f(x)=x(x+1)(x+2)…(x+n),则f’(0)=________。
求极限。
设f(x)在[0,+∞]连续,且=0。证明至少存在ξ∈(0,+∞),使得f(ξ)+ξ=0。
计算二重积分dxdy,其中D={(x,y)|0≤x≤1,0≤y≤1}。
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是()
设f(χ,y)是定义在区域0≤χ≤1,0≤y≤1上的二元连续函数,f(0,0)=-1,求极限=________.
A、 B、 C、 D、 C积分区域D可表示为D={(x,y)|一1≤x≤0,一x≤y≤2一x2}∪{(x,y)|0≤x≤1,x≤y≤2一x2}.D关于y轴对称,而xy关于x为奇函数,因此
设函数f(x)=lnx+(Ⅰ)求f(x)的最小值;(Ⅱ)设数列{xn}满足lnxn+<1,证明xn存在,并求此极限。
(00年)设函数f(x)在[0,π]上连续,且∫0πf(x)dx=0,∫0πf(x)cosxdx=0.试证明:在(0.π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
随机试题
下列哪一项不是宫内节育器放置术禁忌证
患者女性,32岁。外阴瘙痒、白带增多、恶臭1周就诊。无不洁性交史。妇检:白带多,余未见异常。白带常规:鳞状上皮细胞间可见大量短小的杆菌和线索细胞。白带常规:镜下见少量阴道杆菌和上皮细胞,白细胞15~30/HP,其清洁度分级是
马副蛔虫成虫寄生于马属动物的
微笑时的唇低线位于下颌中切牙的
对于腹泻患儿正确的饮食护理是
现行《公路土工试验规程》中厂用测定土含水量的方法有()。
具有经典意义的威尼斯的圣马可广场,经历了相当长的建设时期,最终完成于哪个时期:
(2012年)某城市为了解决上下班高峰时段地铁拥挤问题,制定了非高峰时间段低于高峰时间段票价的方案。根据定价策略,该方法属于()。
版权法保护作者从他们的作品中获得经济利益的权利,专利法保护发明人从他们的发明专利中获得经济利益的权利。可是当计算机软件专家要求法院依法保护他们的经济利益的时候,后者却做出裁决:为机器所写的信息既不适用于版权法,也不适用于专利法。因此很清楚,计算机软件专家们
绿色贸易壁垒[中央财经大学2017、2013国际商务硕士;河北大学2011国际商务硕士]
最新回复
(
0
)