首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A是秩为2的四阶矩阵,又α1,α2,α3是线性方程组Ax=b的解,且α1+α2—α3=(2,0,—5,4)T,α2+2α3=(3,12,3,3)T,α3—2α1=(2,4,1,—2)T,则方程组Ax=b的通解x=( )
设矩阵A是秩为2的四阶矩阵,又α1,α2,α3是线性方程组Ax=b的解,且α1+α2—α3=(2,0,—5,4)T,α2+2α3=(3,12,3,3)T,α3—2α1=(2,4,1,—2)T,则方程组Ax=b的通解x=( )
admin
2019-03-23
67
问题
设矩阵A是秩为2的四阶矩阵,又α
1
,α
2
,α
3
是线性方程组Ax=b的解,且α
1
+α
2
—α
3
=(2,0,—5,4)
T
,α
2
+2α
3
=(3,12,3,3)
T
,α
3
—2α
1
=(2,4,1,—2)
T
,则方程组Ax=b的通解x=( )
选项
A、
B、
C、
D、
答案
A
解析
由于n—R(A)=4—2=2,由非齐次线性方程组解的结构可知,方程组Ax=b的通解形式应为α+k
1
η
1
+k
2
η
2
,故可排除C、D。
由已知条件,
(α
2
+2α
3
)=b,A(α
3
—2α
1
)= —b,所以A项中(1,4,1,1)
T
和B项中(—2,—4,—1,2)
T
都是方程组Ax=b的解。
A项和B项中均有(2,2,—2,1)
T
,因此可知它必是Ax=0的解。
又由于3(α
1
+α
2
—α
3
)—(α
2
+2α
3
)=3(α
1
—α
3
)+2(α
2
—α
3
),且由非齐次线性方程组的解与对应齐次线性方程组的解之间的关系知,3(α
1
—α
3
)+2(α
2
—α
3
)是Ax=0的解,所以(3,—12,—18,9)
T
是Ax=0的解,那么(1,—4,—6,3)
T
也是Ax=0的解,故选A。
转载请注明原文地址:https://www.kaotiyun.com/show/VXV4777K
0
考研数学二
相关试题推荐
设A是3阶不可逆矩阵,α1,α2是AX=0的基础解系,α3是属于特征值λ=1的特征向量,下列不是A的特征向量的是
当a,b取何值时,方程组有唯一解,无解,有无穷多解?当方程组有解时,求其解.
讨论p,t为何值时,方程组无解?有解?有解时写出全部解.
已知方程组总有解,则λ应满足_________.
证明:与基础解系等价的线性无关的向量组也是基础解系.
已知a,b,c不全为零,证明方程组只有零解.
A是n阶矩阵,数a≠b.证明下面3个断言互相等价:(1)(A-aE)(A-bE)=0.(2)r(A-aE)+r(A-bE)=n.(3)A相似于对角矩阵,并且特征值满足(λ-a)(λ-b)=0.
设f(x)在x=x0的邻域内连续,在x=x0的去心邻域内可导,且.证明:f’(x0)=M.
某企业的收益函数为R(Q)=40Q-4Q2,总成本函数C(Q)=2Q2+4Q+10,如果政府对该企业征收产品税T=Qt,其中t为税率,求(1)税收最大时的税率;(2)企业纳税后的最大利润.
随机试题
蛋白质分子中的α-螺旋属于蛋白质的结构是
A.压力感受性反射B.心肺感受器引起的心血管反射C.颈动脉体和主动脉体化学感受性反射D.躯体感受器引起的心血管反射E.脑缺血反应主要调节呼吸运动而间接改变心血管活动的心血管反射是
导致子宫脱垂最主要的原因是()
某管道安装工程项目,该管道工程属于超高层建筑管道工程,由于施工项目经理部严格执行超高层建筑管道施工的技术要点,使得工程进展非常顺利,施工质量达到各项要求。管道安装完毕后,对其进行了系统试验,试验时的有关实施过程如下:(1)采用闪点为40℃的
个人及其所扶养家属维持生活必需的住房和用品,在税收保全措施的范围之内,但是不在强制执行措施的范围之内。()
按照现行政策规定,下列属于车辆购置税免税项目的有()。
根据发生额试算平衡法进行试算平衡,如果试算结果是平衡的,证明记入各账户的发生额是完全正确的。()
下图是PSTN本地网的部分示例图,端局A、C和端局/汇接局B为程控交换机,并采用No.7信令系统,STP为信令转接点。其中,交换局A、B、C的信令点编码分别用SA、SB、SC标识,信令转接点STPl、STP2、STP3的信令点编码分别用S1、S2、S3标识
新时期的爱国主义内涵更加丰富,包括()
Paststudieshavesuggestedtheamygdale(扁桃体)isimportantin(26)______responses.Peoplewhoareshown(27)______pictures,forexa
最新回复
(
0
)