首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维向量组α1,α2,…,αs线性相关,并且α1≠0,证明存在1<k≤s,使得αk可用α1,…,αk-1线性表示.
设n维向量组α1,α2,…,αs线性相关,并且α1≠0,证明存在1<k≤s,使得αk可用α1,…,αk-1线性表示.
admin
2016-10-21
82
问题
设n维向量组α
1
,α
2
,…,α
s
线性相关,并且α
1
≠0,证明存在1<k≤s,使得α
k
可用α
1
,…,α
k-1
线性表示.
选项
答案
因为α
1
,α
2
,…,α
s
线性相关,所以存在不全为0的数c
1
,c
2
,…,c
s
,便得 c
1
α
1
+c
2
α
2
+…+c
s
α
s
=0. 设c
k
是c
1
,c
2
,…,c
s
中最后一个不为0的数,即c
k
≠0,但i>k时,c
i
=0.则k≠1(否则α
1
=0,与条件矛盾),并且有c
1
α
1
+c
2
α
2
+…+c
k
α
k
=0.则于 α
k
=[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/VTt4777K
0
考研数学二
相关试题推荐
由曲线y=x+,x=2及y=2所围图形的面积S=________.
设函数y=y(x)由方程xef(y)=ey确定,其中f具有二阶导数,且f’=1,求.
求极限
设y=f(x)是区间[0,1]上的任一非负连续函数。又设f(x)在区间(0,1)内可导,且f’(x)>,证明第一小问中x0是唯一的。
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并满足xf’(x)=f(x)+x2(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积值为2,求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小。
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
(2008年试题,二(14))设三阶矩阵A的特征值是λ,2,3若行列式|2A|=一48,则λ=__________.
随机试题
案情:杨某被单位辞退,对单位领导极度不满,心存报复。一天,杨某纠集董某、樊某携带匕首闯至厂长贾某办公室,将贾某当场杀死。中级法院一审以故意杀人罪判处杨某死刑,立即执行,判处董某死刑缓期二年执行,判处樊某有期徒刑十五年。问题:如一审宣判后,被告人杨某、
海港码头工程初步设计阶段勘察,码头不在岸坡明显地区,在确定勘探工作量时,其勘探线应首先考虑按()进行布置。
《中华人民共和国建筑法》规定,交付竣工验收的建筑工程,必须符合规定的建筑工程质量标准,有(),并具备国家规定的其他竣工条件。
Itwasunusualforthere()sofewordersinamonth.
关于《中华人民共和国产品质量法》立法原则的说法,错误的是()。
下列基金中,管理费用最低的是()。
据1999年所做的统计,在美国35岁以上的居民中,10%患有肥胖症。因此,如果到2009年美国的人口将达到4亿的估计是正确的,那么到2009年,美国35岁以上患肥胖症的人数将达到2000万。以下哪项最可能是题干的推测所假设的?
1926年9月1日。毛泽东发表《国民革命与农民运动》一文,指出“国民革命的中心问题”是()
某公司拟将5百万元资金投放下属A、B、C三个子公司(以百万元的倍数分配投资),各子公司获得部分投资后的收益如下表所示(以百万元为单位)。该公司投资的总收益至多为(56)百万元。
WhichistrueofmanyAIDSsufferersindevelopingcountries?AIDStreatmentprogramsmayalsoresultin
最新回复
(
0
)