首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(97年)设 则3条直线a1x+b1y+c1=0,a2x+b2y+c2=0,a3x+b3y+c3=0(其中ai2+bi2≠0,i=1,2,3)交于一点的充要条件是
(97年)设 则3条直线a1x+b1y+c1=0,a2x+b2y+c2=0,a3x+b3y+c3=0(其中ai2+bi2≠0,i=1,2,3)交于一点的充要条件是
admin
2017-04-20
65
问题
(97年)设
则3条直线a
1
x+b
1
y+c
1
=0,a
2
x+b
2
y+c
2
=0,a
3
x+b
3
y+c
3
=0(其中a
i
2
+b
i
2
≠0,i=1,2,3)交于一点的充要条件是
选项
A、α
1
,α
2
,α
3
线性相关.
B、α
1
,α
2
,α
3
线性无关.
C、秩r(α
1
,α
2
,α
3
)=秩r(α
1
,α
2
).
D、α
1
,α
2
,α
3
线性相关,α
1
,α
2
线性无关.
答案
D
解析
考虑由3条直线的方程联立所得的线性方程组
3条直线交于一点,也就是方程组(I)有唯一解.
若α
3
=0,则α
1
,α
2
,α
3
线性相关且方程组(I)有零解,由二元齐次线性方程组只有零解的充要条件(系数矩阵的秩等于未知量个数),得r(α
1
,α
2
)=2,故此时只有(D)正确.
若α
3
≠0,则(I)为一非齐次线性方程组,由非齐次线性方程组有唯一解的充要条件(系数矩阵的秩=增广矩阵的秩=未知量个数),得r(α
1
,α
2
)=r(α
1
α
2
一α
3
)=2,即α
1
,α
2
线性无关,而α
1
,α
2
,α
3
线性相关.故只有(D)正确.
转载请注明原文地址:https://www.kaotiyun.com/show/VMu4777K
0
考研数学一
相关试题推荐
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:t为何值时,向量组α1,α2,α3线性相关?
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:x>20与x≤22;
设函数z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导且在x=1处取得极值g(1)=1.求.
曲面x2+2y2+3z2=21在点(1,-2,2)的法线方程为____________.
设函数f(x)连续且恒大于零,其中Ω(t)={(x,y,z)丨x2+y2+z2≤t2},D(t)={(z,y)丨x2+y2≤t2}.讨论F(t)在区间(0,+∞)内的单调性;
质点P沿着以AB为直径的半圆周,从点A(1,2)运动到点B(3,4)的过程中受变力F作用(如图),F的大小等于点P与原点O之间的距离,其方向垂直于线段OP与y轴正向的夹角小于π/2,求变力F对质点P所作的功.
设矩阵A满足A2+A-4E=0,其中E为单位矩阵,则(A-E)-1=__________.
设A,P均为3阶矩阵,PT为P的转置矩阵,且PTAP=若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则QTAQ为
设二维离散型随机变量X、Y的概率分布为(I)求P{X=2Y};(Ⅱ)求Cov(X-Y,Y)与ρXY.
设已知线性方程组Ax=b存在2个小吲的解.求方程组Ax=b的通解.
随机试题
邓小平提出的社会主义两大原则是()
我国第一位爱国主义、浪漫主义诗人是()
ThediscoveryoftheAntarcticnotonlyprovedoneofthemostinterestingofallgeographicaladventures,butcreatedwhatmigh
身热初按热甚,久按热反轻者多属:
根据《标准施工招标文件》中“通用合同条款”的规定,控制合同工程进度的依据是()。
企业依据员工的岗位、职级、能力和工作结果支付给员工的比较稳定的报酬是()。
《民法通则》中,对公民民事行为能力进行分类的依据包括公民的()。
有一批零件,甲、乙两种车床都可以加工。如果甲车床单独加工,可以比乙车床单独加工提前10天完成任务。现在用甲、乙两车床一起加工,结果12天就完成了任务。如果只用甲车床单独加工需多少天完成任务?
「先生、教材のコピー、大変そうですね。 。」 「ありだとう。じゃ、頼むよ。」
AVillaOnSaba:Viila-t-SmallHotelOnSabaSellPrice:Startingat$750,000Location:Zion’sHillSabaNetherlandsAntillesVi
最新回复
(
0
)